Structured Dropout Variational Inference for Bayesian neural networks

Son Nguyen¹, Duong Nguyen³, Khai Nguyen², Khoat Than^{1,3}, Hung Bui^{*,1}, Nhat Ho^{*,2}

¹VinAl Research, Vietnam ²University of Texas, Austin ³Hanoi University of Science and Technology

Why BNNs?

Limitation of deterministic neural nets:

- cannot properly represent uncertainty --> miscalibrated prediction
- not sufficiently robust: overfit with small data, sensitive to ambiguous data
- not sufficiently adaptive: catastrophic forgetting

What BNNs?

- lacktriangle introduce random weights W with **prior distribution** p(W)
- lacktriangle infer a **posterior distribution** $p(W|\mathcal{D})$ instead of point estimates: $p(W|\mathcal{D}) \propto p(W)p(\mathcal{D}|W)$
- lacktriangle make predictions using the **posterior predictive distribution**: $p(y|x,\mathcal{D}) = \int p(W|\mathcal{D})p(y|W,x)dW$

What BNNs?

- lacktriangle introduce random weights $\ W$ with **prior distribution** $\ p(W)$
- lacktriangle infer a **posterior distribution** $p(W|\mathcal{D})$ instead of point estimates: $p(W|\mathcal{D}) \propto p(W)p(\mathcal{D}|W)$
- lacktriangle make predictions using the **posterior predictive distribution**: $p(y|x,\mathcal{D}) = \int p(W|\mathcal{D})p(y|W,x)dW$

How BNNs?

promising advantages: better generalization, robustness, uncertainty quantification, downstream tasks

What BNNs?

- lacktriangle introduce random weights W with **prior distribution** p(W)
- lacktriangle infer a **posterior distribution** $p(W|\mathcal{D})$ instead of point estimates: $p(W|\mathcal{D}) \propto p(W)p(\mathcal{D}|W)$
- lacktriangle make predictions using the **posterior predictive distribution**: $p(y|x,\mathcal{D}) = \int p(W|\mathcal{D})p(y|W,x)dW$

How BNNs?

- promising advantages: better generalization, robustness, uncertainty quantification, downstream tasks
- but in practice, exact inference is intractable: very high dimensionality, non-linearity

Variational Inference for BNNs

Variational inference (VI) approximates the true posterior $p(\mathbf{W}|\mathcal{D})$ by a variational distribution $q_{\phi}(\mathbf{W})$ via optimizing ELBO:

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}(\mathbf{W})} \log p(\mathcal{D}|\mathbf{W}) - \mathbb{D}_{KL}(q_{\phi}(\mathbf{W}) \| p(\mathbf{W}))$$

A central problem: trade-off between approximation expressiveness and computational efficiency

Variational Inference for BNNs

Variational inference (VI) approximates the true posterior $p(\mathbf{W}|\mathcal{D})$ by a variational distribution $q_{\phi}(\mathbf{W})$ via optimizing ELBO:

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}(\mathbf{W})} \log p(\mathcal{D}|\mathbf{W}) - \mathbb{D}_{KL}(q_{\phi}(\mathbf{W}) \| p(\mathbf{W}))$$

A central problem: trade-off between approximation expressiveness and computational efficiency

From the literature:

- **mean-field approximation:** ignores the strong statistical dependencies
 - underestimates posterior structure and model uncertainty

Variational Inference for BNNs

Variational inference (VI) approximates the true posterior $p(\mathbf{W}|\mathcal{D})$ by a variational distribution $q_{\phi}(\mathbf{W})$ via optimizing ELBO:

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}(\mathbf{W})} \log p(\mathcal{D}|\mathbf{W}) - \mathbb{D}_{KL}(q_{\phi}(\mathbf{W}) \| p(\mathbf{W}))$$

A central problem: trade-off between approximation expressiveness and computational efficiency

From the literature:

- **mean-field approximation:** ignores the strong statistical dependencies
 - underestimates posterior structure and model uncertainty
- richer or structured approximations: Matrix Gaussian and variants, low-rank Gaussian, implicit distributions
 - improve both <u>predictive accuracy</u> and <u>uncertainty calibration</u>
 - but some incur a <u>large complexity</u> & are <u>difficult to integrate</u> into CNNs

What Dropout-VI?

interpret <u>Dropout regularization</u> in deterministic nns <u>as a form of approximate inference</u> in Bayesian deep models.

What Dropout-VI?

- interpret <u>Dropout regularization</u> in deterministic nns <u>as a form of approximate inference</u> in Bayesian deep models.
- guaranteed via KL-condition: "approximate Bayesian inference results in an identical objective to that of Dropout training"

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}(W)} \log p(\mathcal{D}|W) - \mathbb{D}_{KL}(q_{\phi}(W) \| p(W)$$

What Dropout-VI?

- interpret <u>Dropout regularization</u> in deterministic nns <u>as a form of approximate inference</u> in Bayesian deep models.
- squaranteed via **KL-condition:** "approximate Bayesian inference results in an identical objective to that of Dropout training"

$$\mathcal{L}(\phi) = \mathbb{E}_{\overline{q_{\phi}(W)}} \log p(\mathcal{D}|W) - \mathbb{D}_{KL}(q_{\phi}(W) \| p(W)$$

 $q_{\phi}(W) = \operatorname{Law}(\operatorname{diag}(\xi)\Theta)$

 ξ : Dropout noise

 $\Theta:$ deterministic weight

 $W:=\operatorname{diag}(\xi)\Theta$: random weight

What Dropout-VI?

- interpret <u>Dropout regularization</u> in deterministic nns <u>as a form of approximate inference</u> in Bayesian deep models.
- guaranteed via **KL-condition:** "approximate Bayesian inference results in an identical objective to that of Dropout training"

$$\mathcal{L}(\phi) = \mathbb{E}_{\overline{q_{\phi}(W)}} \log p(\mathcal{D}|W) - \boxed{\mathbb{D}_{KL}(q_{\phi}(W) \| p(W))}$$

$$q_{\phi}(W) = \operatorname{Law}(\operatorname{diag}(\xi)\Theta)$$

 ξ : Dropout noise

 $\boldsymbol{\Theta}:$ deterministic weight

 $W:=\operatorname{diag}(\xi)\Theta$: random weight

 ξ : Bernoulli noise $\mathcal{B}(p)$

$$q_{\phi}(W) = \prod_{k=1}^K \left(p_k \mathcal{N}(\Theta_k, \sigma^2 \mathbf{I}_L) + (1-p_k) \mathcal{N}(0, \sigma^2 \mathbf{I}_L)
ight)$$

 $p(W): \mathcal{N}(0, \lambda \mathbf{I})$

. ,)

 ξ : Gaussian noise $\mathcal{N}(1, ext{diag}(lpha))$ $q_\phi(W_{ij}) = \mathcal{N}(\Theta_{ij}, lpha_i\Theta_{ij}^2)$

 $q_{\phi}(W_{ij}) = \mathcal{N}(\Theta_{ij}, lpha_i \Theta_{ij}) \ p(|W_{ij}|) \propto 1/|w_{ij}|$

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Variational Dropout and the Local Reparameterization Trick

What Dropout-VI?

- interpret <u>Dropout regularization</u> in deterministic nns <u>as a form of approximate inference</u> in Bayesian deep models.
- guaranteed via **KL-condition:** "approximate Bayesian inference results in an <u>identical objective</u> to that of Dropout training"

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}(W)} \log p(\mathcal{D}|W) - \boxed{\mathbb{D}_{KL}(q_{\phi}(W) \| p(W))}$$

 $q_\phi(W) = \operatorname{Law}(\operatorname{diag}(\xi)\Theta)$

 ξ : Dropout noise

 $\Theta: deterministic weight$

 $W:=\operatorname{diag}(\xi)\Theta$: random weight

 $\sum_{k=1}^{K} rac{p_k l^2}{2N} \|\Theta_k\|_2^2$ $\mathcal{E}_{\mathcal{F}_{k}}$

$$q_{\phi}(W) = \prod_{k=1}^K \left(p_k \mathcal{N}(\Theta_k, \sigma^2 \mathbf{I}_L) + (1-p_k) \mathcal{N}(0, \sigma^2 \mathbf{I}_L)
ight)$$

 $p(W): \mathcal{N}(0, \lambda \mathbf{I})$

 $\sum_{i=1}^K \left(0.5\log(lpha_i) + c_1lpha_i + c_2lpha_i^2 + c_3lpha_i^3 + C
ight)$

 ξ : Gaussian noise $\mathcal{N}(1, \operatorname{diag}(\alpha))$

$$q_{\phi}(W_{ij}) = \mathcal{N}(\Theta_{ij}, lpha_i \Theta_{ij}^2)$$

 $p(|W_{ij}|) \propto 1/|w_{ij}|$

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Variational Dropout and
the Local Reparameterization Trick

Why Dropout-VI?

- competitive accuracy compared to structured VI, but with much cheaper computational complexity
- **complementary advantages**: <u>Bayesian inference</u> and <u>theoretical Dropout inductive biases</u>

Why Dropout-VI?

- competitive accuracy compared to structured VI, but with much cheaper computational complexity
- complementary advantages: <u>Bayesian inference</u> and <u>theoretical Dropout inductive biases</u>
- research gap: DVI also employed the simple structures of mean-field family for Dropout posterior

On the Expressiveness of Approximate Inference in Bayesian Neural Networks

Multiplicative Normalizing Flows for Variational Bayesian Neural Networks

ICML 2017, empirical results

NeurIPS 2020, ...Theoretically, mean-field Gaussian and Dropout approximates <u>cannot reasonably represent uncertainty</u>"

Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"

Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"

Challenges?

1. maintain the backpropagation <u>in parallel</u> and optimize efficiently with gradient-based methods

Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"

Challenges?

- 1. maintain the backpropagation *in parallel* and optimize efficiently with gradient-based methods
- 2. acquire <u>flexible</u> Bayesian inference in terms of both prior and approximate posterior, but guarantee **KL-condition**

Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"

- Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"
- Approach:
 - ullet consider an original Dropout noise sampled from a Gaussian distribution: $m{\xi}^{(0)}\sim \mathcal{N}(\mathbf{1}_K,\mathrm{diag}(lpha))$

- Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"
- Approach:
 - ullet consider an original Dropout noise sampled from a Gaussian distribution: $m{\xi}^{(0)}\sim \mathcal{N}(\mathbf{1}_K,\mathrm{diag}(lpha))$
 - ullet extract $\,\xi^{(0)}=1+\eta^{(0)}$ and successively transform $\,\eta^{(0)}$ through a chain of $\,T$ Householder reflections

$$\xi^{(t)} := 1 + H_t H_{t-1} \ldots H_1 \eta^{(0)} = 1 + U \eta^{(0)}$$

$$\begin{aligned} \mathbf{v}_t &= \text{FC-layer}(\mathbf{v}_{t-1}) \\ \mathbf{H}_t &= \mathbf{I} - 2 \frac{\mathbf{v}_t \mathbf{v}_t^T}{\|\mathbf{v}_t\|_2^2} \text{ is called the Householder matrix} \end{aligned}$$

- Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"
- Approach:
 - ullet consider an original Dropout noise sampled from a Gaussian distribution: $m{\xi}^{(0)}\sim \mathcal{N}(\mathbf{1}_K,\mathrm{diag}(lpha))$
 - ullet extract $\,\xi^{(0)}=1+\eta^{(0)}$ and successively transform $\,\eta^{(0)}$ through a chain of $\,T$ Householder reflections

$$oldsymbol{\xi^{(t)}} := 1 + H_t H_{t-1} \ldots H_1 \eta^{(0)} = 1 + U \eta^{(0)}$$
 $oldsymbol{\xi^{(t)}} \sim \mathcal{N}(\mathbf{1}_K, U \mathrm{diag}(lpha) U^T)$

- Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"
- Approach:
 - ullet consider an original Dropout noise sampled from a Gaussian distribution: $m{\xi}^{(0)} \sim \mathcal{N}(\mathbf{1}_K, ext{diag}(lpha))$
 - ullet extract $\,\xi^{(0)}=1+\eta^{(0)}$ and successively transform $\,\eta^{(0)}$ through a chain of $\,T$ Householder reflections

$$oxed{\xi^{(t)} := 1 + H_t H_{t-1} \ldots H_1 \eta^{(0)} = 1 + U \eta^{(0)}} oxed{\xi^{(t)}} \sim \mathcal{N}(\mathbf{1}_K, U \mathrm{diag}(lpha) U^T)}$$

• inject structured noise $\xi^{(t)}$ into deterministic weight Θ :

$$\mathbf{W}^{(t)} := ext{diag}(\xi^{(t)})\Theta$$
 $q_t(\mathbf{W}) = ext{Law}(ext{diag}(\xi^{(t)})\Theta)$

- Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"
- **Approach:**
 - ullet consider an original Dropout noise sampled from a Gaussian distribution: $m{\xi}^{(0)} \sim \mathcal{N}(\mathbf{1}_K, ext{diag}(lpha))$
 - ullet extract $\,\xi^{(0)}=1+\eta^{(0)}$ and successively transform $\,\eta^{(0)}$ through a chain of $\,T$ Householder reflections

$$oxed{\xi^{(t)} := 1 + H_t H_{t-1} \ldots H_1 \eta^{(0)} = 1 + U \eta^{(0)}} oxed{\xi^{(t)}} \sim \mathcal{N}(\mathbf{1}_K, U \mathrm{diag}(lpha) U^T)}$$

• inject structured noise $\xi^{(t)}$ into deterministic weight Θ :

Contribution 1: VSD overcomes the singularity issue of approximate posterior in VD

$$\mathbf{W}^{(VD)} = \operatorname{diag}(\xi^{(0)})\Theta = \Theta + \operatorname{diag}(\eta^{(0)})\Theta = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} (\operatorname{diag}(\mathbf{e}_i)\Theta) = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} \Theta_{(i)}$$

$$\mathbf{W}^{(VSD)} = \operatorname{diag}(\xi^{(t)})\Theta = \Theta + \operatorname{diag}(\mathbf{U}\eta^{(0)})\Theta = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} (\operatorname{diag}(\mathbf{U}_{i:})\Theta)$$

Contribution 1: VSD overcomes the singularity issue of approximate posterior in VD

$$\mathbf{W}^{(VD)} = \operatorname{diag}(\xi^{(0)})\Theta = \Theta + \operatorname{diag}(\eta^{(0)})\Theta = \Theta + \sum_{i=1}^K \eta_i^{(0)} (\operatorname{diag}(\mathbf{e}_i)\Theta) = \Theta + \sum_{i=1}^K \eta_i^{(0)} \Theta_{(i)}$$

$$\mathbf{W}^{(VSD)} = \operatorname{diag}(\xi^{(t)})\Theta = \Theta + \operatorname{diag}(\mathbf{U}\eta^{(0)})\Theta = \Theta + \sum_{i=1}^K \eta_i^{(0)} (\operatorname{diag}(\mathbf{U}_i)\Theta)$$
 No Yes singular components

Contribution 1: VSD overcomes the singularity issue of approximate posterior in VD

$$\mathbf{W}^{(VD)} = \operatorname{diag}(\xi^{(0)})\Theta = \Theta + \operatorname{diag}(\eta^{(0)})\Theta = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} (\operatorname{diag}(\mathbf{e}_i)\Theta) = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} \Theta_{(i)}$$

$$\mathbf{W}^{(VSD)} = \operatorname{diag}(\xi^{(t)})\Theta = \Theta + \operatorname{diag}(\mathbf{U}\eta^{(0)})\Theta = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} (\operatorname{diag}(\mathbf{U}_{i:})\Theta)$$

$$\mathcal{KL}_B[\mu||\eta] = \sum_{i=1}^{|B|} \mu(B_i) \log \frac{\mu(B_i)}{\eta(B_i)}$$

infinite in VD, well-defined in VSD

is validly defined, but how to analyze?

Contribution 1: VSD overcomes the singularity issue of approximate posterior in VD

$$\mathbf{W}^{(VD)} = \operatorname{diag}(\xi^{(0)})\Theta = \Theta + \operatorname{diag}(\eta^{(0)})\Theta = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} (\operatorname{diag}(\mathbf{e}_i)\Theta) = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} \Theta_{(i)}$$

$$\mathbf{W}^{(VSD)} = \operatorname{diag}(\xi^{(t)})\Theta = \Theta + \operatorname{diag}(\mathbf{U}\eta^{(0)})\Theta = \Theta + \sum_{i=1}^{K} \eta_i^{(0)} (\operatorname{diag}(\mathbf{U}_{i:})\Theta)$$

$$\mathbb{D}_{KL}(q_t(\mathbf{W})||p(\mathbf{W}))$$

$$q_t(\mathbf{W}) = \operatorname{Law}(\operatorname{diag}(\xi^{(t)})\Theta)$$

$$\operatorname{Singular}$$

singular

components

- Approach (cont'd):
 - ullet consider isotropic Gaussian prior: $p(\mathbf{W}) = \prod_{j=1}^Q p(\mathbf{W}_{:j})$ with $p(\mathbf{W}_{:j}) = \mathcal{N}(0, \operatorname{diag}(eta_{:j}^{-1}))$

Approach (cont'd):

- consider isotropic Gaussian prior: $p(\mathbf{W}) = \prod_{j=1}^{Q} p(\mathbf{W}_{:j})$ with $p(\mathbf{W}_{:j}) = \mathcal{N}(0, \operatorname{diag}(\beta_{:j}^{-1}))$
- augment a **mutual information** term $I(\mathbf{W}_{:1}, \mathbf{W}_{:2}, ..., \mathbf{W}_{:Q})$ to encourage correlations:

$$\mathcal{L}_{MI}(\phi) := \mathbb{E}_{q_{\alpha}(\xi)} \log p(\mathcal{D}|\Theta, \xi^{(t)}) - \mathbb{D}_{KL}(q_{t}(\mathbf{W})||p(\mathbf{W})) + \mathbf{I}(\mathbf{W}_{:1}, \mathbf{W}_{:2}, ..., \mathbf{W}_{:Q})$$
$$= \mathbb{E}_{q_{\alpha}(\xi)} \log p(\mathcal{D}|\Theta, \xi^{(t)}) - \mathbb{D}_{KL}(q_{t}^{\star}(\mathbf{W})||p(\mathbf{W})),$$

with
$$q_t^\star(\mathbf{W}) := \prod_{j=1}^Q q_t(\mathbf{W}_{:j})$$

Approach (cont'd):

- consider isotropic Gaussian prior: $p(\mathbf{W}) = \prod_{j=1}^Q p(\mathbf{W}_{:j})$ with $p(\mathbf{W}_{:j}) = \mathcal{N}(0, \operatorname{diag}(\beta_{:j}^{-1}))$
- augment a **mutual information** term $I(W_{:1}, W_{:2}, ..., W_{:Q})$ to encourage correlations:

$$\mathcal{L}_{MI}(\phi) := \mathbb{E}_{q_{\alpha}(\xi)} \log p(\mathcal{D}|\Theta, \xi^{(t)}) - \mathbb{D}_{KL}(q_{t}(\mathbf{W})||p(\mathbf{W})) + \mathbf{I}(\mathbf{W}_{:1}, \mathbf{W}_{:2}, ..., \mathbf{W}_{:Q})$$
$$= \mathbb{E}_{q_{\alpha}(\xi)} \log p(\mathcal{D}|\Theta, \xi^{(t)}) - \mathbb{D}_{KL}(q_{t}^{\star}(\mathbf{W})||p(\mathbf{W})),$$

with
$$q_t^\star(\mathbf{W}) := \prod_{j=1}^Q q_t(\mathbf{W}_{:j})$$

• use Empirical Bayes (EB) to specify β :

$$\mathbb{D}_{KL}^{EB}(q_t^{\star}(\mathbf{W})||p(\mathbf{W})) = \frac{Q}{2} \sum_{i=1}^K \log \frac{1 + \sum_{j=1}^K \alpha_j U_{ij}^2}{\alpha_i} \longrightarrow \text{KL condition}$$

- Contribution 2: VSD is flexible in terms of both approximate posterior and prior distribution.
 - ullet expand hierarchically prior distribution: $|p(\mathbf{W},\mathbf{z})=p(\mathbf{W}|\mathbf{z},eta)p(\mathbf{z})|$
 - ullet do joint inference with Dropout posterior: $q_t(\mathbf{W},\mathbf{z}) = q_{\psi}(\mathbf{z})q_t(\mathbf{W}|\mathbf{z})$

- Contribution 2: VSD is flexible in terms of both approximate posterior and prior distribution.
 - ullet expand hierarchically prior distribution: $p(\mathbf{W},\mathbf{z}) = p(\mathbf{W}|\mathbf{z},eta)p(\mathbf{z})$
 - do joint inference with Dropout posterior: $q_t(\mathbf{W}, \mathbf{z}) = q_{\psi}(\mathbf{z}) q_t(\mathbf{W}|\mathbf{z})$
 - drawing $\mathbf{W} \sim q_t(\mathbf{W}, \mathbf{z})$ follows a hierarchical Dropout procedure:

$$\mathbf{z} \sim q_{\psi}(\mathbf{z}), \quad \xi_n^{(t)} \sim \mathcal{N}(\mathbf{1}_K, \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^T)$$

- Contribution 2: VSD is flexible in terms of both approximate posterior and prior distribution.
 - ullet expand hierarchically prior distribution: $|p(\mathbf{W},\mathbf{z})=p(\mathbf{W}|\mathbf{z},eta)p(\mathbf{z})|$
 - do joint inference with Dropout posterior: $q_t(\mathbf{W}, \mathbf{z}) = q_{\psi}(\mathbf{z}) q_t(\mathbf{W}|\mathbf{z})$
 - ullet drawing $\mathbf{W} \sim q_t(\mathbf{W}, \mathbf{z})$ follows a hierarchical Dropout procedure:

$$\mathbf{z} \sim q_{\psi}(\mathbf{z}), \quad \xi_n^{(t)} \sim \mathcal{N}(\mathbf{1}_K, \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^T)$$

$$\widehat{\xi}_n^{(t)} = \mathbf{z} \odot \xi_n^{(t)}$$

- Contribution 2: VSD is flexible in terms of both approximate posterior and prior distribution.
 - ullet expand hierarchically prior distribution: $p(\mathbf{W},\mathbf{z}) = p(\mathbf{W}|\mathbf{z},eta)p(\mathbf{z})$
 - ullet do joint inference with Dropout posterior: $q_t(\mathbf{W},\mathbf{z}) = q_{\psi}(\mathbf{z})q_t(\mathbf{W}|\mathbf{z})$
 - ullet drawing $\mathbf{W} \sim q_t(\mathbf{W}, \mathbf{z})$ follows a hierarchical Dropout procedure:

- **Contribution 2:** VSD is flexible in terms of both approximate posterior and prior distribution.
 - ullet expand hierarchically prior distribution: $p(\mathbf{W},\mathbf{z}) = p(\mathbf{W}|\mathbf{z},eta)p(\mathbf{z})$
 - do joint inference with Dropout posterior: $q_t(\mathbf{W}, \mathbf{z}) = q_{\psi}(\mathbf{z}) q_t(\mathbf{W}|\mathbf{z})$
 - ullet drawing $\mathbf{W} \sim q_t(\mathbf{W}, \mathbf{z})$ follows a hierarchical Dropout procedure:

$$\mathbf{z} \sim q_{\psi}(\mathbf{z}), \quad \xi_{n}^{(t)} \sim \mathcal{N}(\mathbf{1}_{K}, \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^{T})$$

$$\widehat{\xi}_{n}^{(t)} = \mathbf{z} \odot \xi_{n}^{(t)} \longrightarrow \mathbf{W} = \operatorname{diag}(\widehat{\xi}_{n}^{(t)}) \Theta$$

satisfy the KL condition w/o further simplifying assumption

Contribution 3: VSD induces an adaptive regularization with several desirable inductive biases

$$R_{VSD} = \mathbb{E}_{(\mathbf{x} \sim \mathcal{B})} \sum_{i=1}^{L} \left\langle \mathbf{H}_{i}, \operatorname{diag}(\mathbf{h}_{i}) \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^{T} \operatorname{diag}(\mathbf{h}_{i}) \right\rangle$$

Contribution 3: VSD induces an adaptive regularization with several desirable inductive biases

$$R_{VSD} = \mathbb{E}_{(\mathbf{x} \sim \mathcal{B})} \sum_{i=1}^{L} \left\langle \mathbf{H}_{i}, \operatorname{diag}(\mathbf{h}_{i}) \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^{T} \operatorname{diag}(\mathbf{h}_{i}) \right\rangle$$

$$R_{VSD}^{(i)} \approx \mathbb{E}_{\mathbf{x} \sim \mathcal{B}} \mathbf{Trace} \left(\operatorname{diag}(\mathbf{h}_{i}(\mathbf{x})) \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^{T} \operatorname{diag}(\mathbf{h}_{i}(\mathbf{x})) \mathbf{H}_{i}(\mathbf{x}) \right)$$

$$= \mathbb{E}_{\mathbf{x} \sim \mathcal{B}} \|\mathbf{H}_{i}^{1/2}(\mathbf{x}) \operatorname{diag}(\mathbf{h}_{i}(\mathbf{x})) \mathbf{U} \operatorname{diag}(\alpha^{1/2}) \|_{F}^{2}.$$

Contribution 3: VSD induces an adaptive regularization with several desirable inductive biases

$$R_{VSD} = \mathbb{E}_{(\mathbf{x} \sim \mathcal{B})} \sum_{i=1}^{L} \left\langle \mathbf{H}_{i}, \operatorname{diag}(\mathbf{h}_{i}) \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^{T} \operatorname{diag}(\mathbf{h}_{i}) \right\rangle$$

$$R_{VSD}^{(i)} \approx \mathbb{E}_{\mathbf{x} \sim \mathcal{B}} \mathbf{Trace} \left(\operatorname{diag}(\mathbf{h}_i(\mathbf{x})) \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^T \operatorname{diag}(\mathbf{h}_i(\mathbf{x})) \mathbf{H}_i(\mathbf{x}) \right)$$
$$= \mathbb{E}_{\mathbf{x} \sim \mathcal{B}} \|\mathbf{H}_i^{1/2}(\mathbf{x}) \operatorname{diag}(\mathbf{h}_i(\mathbf{x})) \mathbf{U} \operatorname{diag}(\alpha^{1/2}) \|_F^2.$$

$$\mathbf{Q} := \Gamma \Gamma^T = \mathsf{diag}(\mathbf{h}_i(\mathbf{x})) \mathbf{U} \mathsf{diag}(\alpha) \mathbf{U}^T \mathsf{diag}(\mathbf{h}_i(\mathbf{x}))$$

$$=\mathbb{E}_{\mathbf{x}\sim\mathcal{B}}\left(\Theta^{[i:L]}\mathbf{Q}\Theta^{[i:L].T}
ight)$$

VSD imposes a <u>Tikhonov-like regularization</u>

and reshapes the gradient.

$$\Omega_i := \operatorname{diag}(\mathbf{h}_i(\mathbf{x}))\mathbf{J}_i^T(\mathbf{x})\mathbf{H}_{\operatorname{out}}(\mathbf{x})\mathbf{J}_i(\mathbf{x})\operatorname{diag}(\mathbf{h}_i\mathbf{x})$$

$$= \mathbb{E}_{\mathbf{x} \sim \mathcal{B}} \sum_{k=1}^{K} \alpha_k \mathbf{U}_{:k}^T \Omega_i \mathbf{U}_{:k}$$

VSD penalizes implicitly the <u>spectral norm</u>

of weight matrices

Contribution 3: VSD induces an adaptive regularization with several desirable inductive biases

$$R_{VSD} = \mathbb{E}_{(\mathbf{x} \sim \mathcal{B})} \sum_{i=1}^{L} \left\langle \mathbf{H}_i, \operatorname{diag}(\mathbf{h}_i) \mathbf{U} \operatorname{diag}(lpha) \mathbf{U}^T \operatorname{diag}(\mathbf{h}_i) \right
angle$$

$$R_{VSD}^{(i)} \approx \mathbb{E}_{\mathbf{x} \sim \mathcal{B}} \mathbf{Trace} \left(\operatorname{diag}(\mathbf{h}_i(\mathbf{x})) \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^T \operatorname{diag}(\mathbf{h}_i(\mathbf{x})) \mathbf{H}_i(\mathbf{x}) \right)$$
$$= \mathbb{E}_{\mathbf{x} \sim \mathcal{B}} \|\mathbf{H}_i^{1/2}(\mathbf{x}) \operatorname{diag}(\mathbf{h}_i(\mathbf{x})) \mathbf{U} \operatorname{diag}(\alpha^{1/2}) \|_F^2.$$

$$\mathbf{Q} := \Gamma \Gamma^T = \operatorname{diag}(\mathbf{h}_i(\mathbf{x})) \mathbf{U} \operatorname{diag}(\alpha) \mathbf{U}^T \operatorname{diag}(\mathbf{h}_i(\mathbf{x}))$$

$$=\mathbb{E}_{\mathbf{x}\sim\mathcal{B}}\left(\Theta^{[i:L]}\mathbf{Q}\Theta^{[i:L].T}
ight)$$

VSD imposes a <u>Tikhonov-like regularization</u> and <u>reshapes the gradient</u>.

complementary advantages

$$\Omega_i := \operatorname{diag}(\mathbf{h}_i(\mathbf{x}))\mathbf{J}_i^T(\mathbf{x})\mathbf{H}_{\operatorname{out}}(\mathbf{x})\mathbf{J}_i(\mathbf{x})\operatorname{diag}(\mathbf{h}_i\mathbf{x})$$

$$= \mathbb{E}_{\mathbf{x} \sim \mathcal{B}} \sum_{k=1}^{K} \alpha_k \mathbf{U}_{:k}^T \Omega_i \mathbf{U}_{:k}$$

VSD penalizes implicitly the <u>spectral norm</u> of weight matrices

- Contribution 4: VSD gains noticeable empirical results compared to other variational methods.
- Regression task:

Table 10: Average test performance for UCI regression task. Results are reported with RMSE and Std. Errors.

Dataset	BBB	VMG	MNF	SLANG	MCD	VD	D.E	VSD
Boston	3.43 ± 0.20	2.70 ± 0.13	2.98 ± 0.06	3.21 ± 0.19	2.83 ± 0.17	2.98 ± 0.18	3.28 ± 0.22	2.64 ± 0.17
Concrete	6.16 ± 0.13	4.89 ± 0.12	6.57 ± 0.04	5.58 ± 0.19	4.93 ± 0.14	5.16 ± 0.13	6.03 ± 0.13	4.72 ± 0.11
Energy	0.97 ± 0.09	0.54 ± 0.02	2.38 ± 0.07	0.64 ± 0.03	1.08 ± 0.03	0.64 ± 0.02	2.09 ± 0.06	0.47 ± 0.01
Kin8nm	0.08 ± 0.00	0.08 ± 0.00	0.09 ± 0.00	0.08 ± 0.00	0.09 ± 0.00	0.08 ± 0.00	0.09 ± 0.00	0.08 ± 0.00
Naval	0.00 ± 0.00							
Power Plant	4.21 ± 0.03	4.04 ± 0.04	4.19 ± 0.01	4.16 ± 0.04	4.00 ± 0.04	3.99 ± 0.03	4.11 ± 0.04	3.92 ± 0.04
Wine	0.64 ± 0.01	0.63 ± 0.01	0.61 ± 0.00	0.65 ± 0.01	0.61 ± 0.01	0.62 ± 0.01	0.64 ± 0.00	0.63 ± 0.01
Yacht	1.13 ± 0.06	0.71 ± 0.05	2.13 ± 0.05	1.08 ± 0.06	0.72 ± 0.05	1.09 ± 0.09	1.58 ± 0.11	0.69 ± 0.06

Table 11: Average test performance for UCI regression task. Results are reported with test LL and Std. Errors.

Dataset	BBB	VMG	MNF	SLANG	MCD	VD	D.E	VSD
Boston	-2.66 ± 0.06	-2.46 ± 0.09	-2.51 ± 0.06	-2.58 ± 0.05	-2.40 ± 0.04	-2.39 ± 0.04	-2.41 ± 0.06	-2.35 ± 0.05
Concrete	-3.25 ± 0.02	-3.01 ± 0.03	-3.35 ± 0.04	-3.13 ± 0.03	-2.97 ± 0.02	-3.07 ± 0.03	-3.06 ± 0.04	-2.97 ± 0.02
Energy	-1.45 ± 0.10	-1.06 ± 0.03	-3.18 ± 0.07	-1.12 ± 0.01	-1.72 ± 0.01	-1.30 ± 0.01	-1.38 ± 0.05	-1.06 ± 0.01
Kin8nm	1.07 ± 0.00	1.10 ± 0.01	1.04 ± 0.00	1.06 ± 0.00	0.97 ± 0.00	1.14 ± 0.01	1.20 ± 0.00	1.17 ± 0.01
Naval	4.61 ± 0.01	2.46 ± 0.00	3.96 ± 0.01	4.76 ± 0.00	4.76 ± 0.01	4.81 ± 0.00	5.63 ± 0.00	4.83 ± 0.01
Power Plant	-2.86 ± 0.01	-2.82 ± 0.01	-2.86 ± 0.01	-2.84 ± 0.01	-2.79 ± 0.01	-2.82 ± 0.01	-2.79 ± 0.01	-2.79 ± 0.01
Wine	-0.97 ± 0.01	-0.95 ± 0.01	-0.93 ± 0.00	-0.97 ± 0.01	-0.92 ± 0.01	-0.94 ± 0.01	-0.94 ± 0.03	-0.95 ± 0.01
Yacht	-1.56 ± 0.02	-1.30 ± 0.02	-1.96 ± 0.05	-1.88 ± 0.01	-1.38 ± 0.01	-1.42 ± 0.02	-1.18 ± 0.05	-1.14 ± 0.02

- **Contribution 4:** VSD gains noticeable empirical results compared to other variational methods.
- Image classification task:

Table 4: Image classification using AlexNet architecture. Results are averaged over 5 random seeds.

A low Not		CIFAR10	9	(CIFAR10	0		SVHN			STL10	
AlexNet	NLL	ACC	ECE	NLL	ACC	ECE	NLL	ACC	ECE	NLL	ACC	ECE
MAP	1.038	69.58	0.121	4.705	40.23	0.393	0.418	87.56	0.033	2.532	65.70	0.267
BBB	0.994	65.38	0.062	2.659	32.41	0.049	0.476	87.30	0.094	1.707	65.46	0.222
MCD	0.717	75.22	0.023	2.503	42.91	0.151	0.401	88.03	0.023	1.059	63.65	0.052
VD	0.702	77.28	0.028	2.582	43.10	0.106	0.327	90.76	0.010	2.130	65.48	0.195
ELRG	0.723	76.87	0.065	2.368	42.90	0.099	0.312	90.66	0.006	1.088	59.99	0.01
VSD	0.656	78.21	0.046	2.241	46.85	0.112	0.290	91.62	0.008	1.019	67.98	0.079
D.E	0.872	77.56	0.115	3.402	46.42	0.314	0.319	90.30	0.008	2.229	68.51	0.24
SWAG	0.651	78.14	0.059	1.958	49.81	0.028	0.331	90.04	0.031	1.522	68.41	0.16

Table 5: Image classification using ResNet18 architecture. Results are averaged over 5 random seeds.

ResNet18	CIFAR10			(CIFAR10	0		SVHN			STL10	
Resiletto	NLL	ACC	ECE	NLL	ACC	ECE	NLL	ACC	ECE	NLL	ACC	ECE
MAP	0.644	86.34	0.093	2.410	55.38	0.243	0.232	95.32	0.028	1.401	71.26	0.199
BBB	0.697	76.63	0.071	2.239	41.07	0.100	0.218	94.53	0.047	1.290	71.55	0.179
MCD	0.534	87.47	0.084	2.121	59.28	0.227	0.207	95.78	0.026	1.333	72.28	0.188
VD	0.451	87.68	0.024	2.888	56.80	0.284	0.164	96.11	0.017	1.084	73.29	0.084
ELRG	0.382	87.24	0.018	1.634	58.14	0.096	0.145	96.03	0.003	0.811	73.66	0.080
VSD	0.464	87.44	0.061	1.504	60.15	0.116	0.140	96.41	0.003	0.769	74.50	0.083
D.E	0.488	88.91	0.069	1.913	60.16	0.203	0.171	96.36	0.020	1.197	73.16	0.177
SWAG	0.330	88.77	0.026	1.417	62.45	0.028	0.130	96.72	0.016	0.843	73.15	0.069

- **Contribution 4:** VSD gains noticeable empirical results compared to other variational methods.
- Predictive entropy:

Figure 4: Histograms of predictive entropy for AlexNet (top) and ResNet18 (bottom) trained on CIFAR10 and CIFAR100 respectively.

- Contribution 4: VSD gains noticeable empirical results compared to other variational methods.
- OOD metrics:

LeNet-5		CIFAR10						CIFAR100				
(SVHN)	FPR	Det. err.	AUROC	AUPR IN	AUPR OUT	FPR	Det. err.	AUROC	AUPR IN	AUPR OUT		
MAP	0.78	0.23	0.83	0.93	0.58	0.76	0.22	0.84	0.93	0.60		
BBB	0.56	0.17	0.90	0.96	0.73	0.54	0.17	0.90	0.96	0.75		
MCD	0.50	0.15	0.92	0.97	0.78	0.49	0.15	0.92	0.97	0.78		
VD	0.62	0.17	0.89	0.96	0.71	0.64	0.17	0.89	0.96	0.71		
VSD	0.45	0.14	0.93	0.97	0.81	0.47	0.14	0.92	0.97	0.79		

AlexNet			CIFAI	R100		SVHN						
(CIFAR10)	FPR	Det. err.	AUROC	AUPR IN	AUPR OUT	FPR	Det. err.	AUROC	AUPR IN	AUPR OUT		
MAP	0.88	0.35	0.70	0.73	0.65	0.89	0.33	0.71	0.59	0.83		
BBB	0.93	0.46	0.55	0.54	0.54	0.99	0.45	0.53	0.33	0.70		
MCD	0.91	0.41	0.63	0.63	0.60	0.97	0.39	0.59	0.47	0.74		
VD	0.87	0.35	0.69	0.72	0.64	0.89	0.32	0.72	0.60	0.83		
VSD	0.85	0.33	0.72	0.76	0.68	0.91	0.30	0.73	0.65	0.83		

ResNet-18			CIFA	R10		SVHN					
(CIFAR100)	FPR	Det. err.	AUROC	AUPR IN	AUPR OUT	FPR	Det. err.	AUROC	AUPR IN	AUPR OUT	
MAP	0.89	0.37	0.67	0.70	0.63	0.91	0.36	0.68	0.56	0.81	
BBB	0.93	0.41	0.62	0.66	0.58	0.89	0.37	0.68	0.51	0.82	
MCD	0.89	0.37	0.68	0.71	0.63	0.89	0.34	0.71	0.58	0.83	
VD	0.90	0.38	0.66	0.70	0.62	0.87	0.34	0.70	0.58	0.83	
VSD	0.87	0.37	0.69	0.72	0.65	0.83	0.31	0.76	0.65	0.86	

Contribution 5: VSD exhibits significant computational efficiency

Table 6: Computational complexity per layer of MAP and different variational methods.

Method	Time	Memory		
MAP	$ \mathcal{O}(KL \mathcal{B})$	$ \mathcal{O}(L \mathcal{B})$		
BBB	$\mathcal{O}(sKL \mathcal{B})$	$O(sKL + L \mathcal{B})$		
BBB-LTR	$\mathcal{O}(2KL \mathcal{B})$	$\mathcal{O}(2L \mathcal{B})$		
VMG	$\mathcal{O}(m^3 + 2KL \mathcal{B})$	$\mathcal{O}(KL \mathcal{B})$		
SLANG	$\mathcal{O}(r^2KL + rsKL \mathcal{B})$	$O(rKL + sKL \mathcal{B})$		
ELRG	$\mathcal{O}(r^3 + (r+2)KL \mathcal{B})$	$\mathcal{O}((r+2)L \mathcal{B})$		
VSD	$ \mathcal{O}(K^2 + KL \mathcal{B}) $	$ \mathcal{O}(K^2 + K \mathcal{B})$		
VSD-low rank	$\mathcal{O}(rK + KL \mathcal{B})$	$\mathcal{O}(K^2 + K \mathcal{B})$		

Table 7: Computation time of variational methods compared to standard MAP (1x).

Methods	Time/epoch (s)								
Methods	LeNet5	AlexNet	ResNet18						
BBB-LTR	1.53x	1.75x	3.28x						
MNF	2.86x	3.40x	4.88x						
VD	1.18x	1.15x	1.32x						
VSD T = 1	1.25x	1.32x	1.86x						
VSD T = 2	1.35x	1.49x	2.90x						
time-scaling	1.08	1.13	1.56						

Conclusion

♦ Introducing a novel Dropout Variational Inference framework for BNNs

Email: v.sonnv27@vinai.io