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Bayesian neural networks (BNNs)

Why BNNs?

Limitation of deterministic neural nets:

❖ cannot properly represent uncertainty --> miscalibrated prediction

❖ not sufficiently robust: overfit with small data, sensitive to ambiguous data

❖ not sufficiently adaptive: catastrophic forgetting
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Bayesian neural networks (BNNs)

What BNNs ?

❖ introduce random weights         with prior distribution 

❖ infer a posterior distribution                   instead of point estimates: 

❖ make predictions using the posterior predictive distribution:  
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How BNNs ?

❖ promising advantages: better generalization, robustness, 
uncertainty quantification, downstream tasks

❖ but in practice, exact inference is intractable: very high 
dimensionality, non-linearity
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Variational Inference for BNNs

Variational inference (VI) approximates the true posterior                    by a variational distribution        
via optimizing ELBO:

❖ A central problem: trade-off between approximation expressiveness and computational efficiency                          
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Variational inference (VI) approximates the true posterior                    by a variational distribution        
via optimizing ELBO:

❖ A central problem: trade-off between approximation expressiveness and computational efficiency                          

From the literature:

❖ mean-field approximation: ignores the strong statistical dependencies
● underestimates posterior structure and model uncertainty

❖ richer or structured approximations: Matrix Gaussian and variants, 
low-rank Gaussian, implicit distributions
● improve both predictive accuracy and uncertainty calibration
● but some incur a large complexity & are difficult to integrate into CNNs
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Dropout Variational Inference for BNNs

What Dropout-VI ?

❖ interpret Dropout regularization in deterministic nns as a form of approximate inference in Bayesian deep models.

❖ guaranteed via KL-condition: "approximate Bayesian inference results in an identical objective to that of Dropout training"
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Dropout Variational Inference for BNNs

Why Dropout-VI ?

❖ competitive accuracy compared to structured VI, but with much cheaper computational complexity

❖ complementary advantages : Bayesian inference and theoretical Dropout inductive biases

❖ research gap: DVI also employed the simple structures of mean-field family for Dropout posterior
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Dropout Variational Inference for BNNs

Why Dropout-VI ?
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NeurIPS 2020, ...Theoretically, mean-field Gaussian and Dropout 
approximates cannot reasonably represent uncertainty"

ICML 2017, empirical results



Dropout Variational Inference for BNNs

Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"
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Challenges ?

1. maintain the backpropagation in parallel and optimize efficiently with gradient-based methods

2. acquire flexible Bayesian inference in terms of both prior and approximate posterior , but guarantee KL-condition

3. address theoretical pathologies of previous Dropout-VI methods: non-Bayesian perspective
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Dropout Variational Inference for BNNs

Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"
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Challenges ?

1. maintain the backpropagation in parallel and optimize efficiently with gradient-based methods

2. acquire flexible Bayesian inference in terms of both prior and approximate posterior , but guarantee KL-condition

3. address theoretical pathologies of previous Dropout-VI methods: non-Bayesian perspective

● improper prior --> ill-posed true posterior
● singularity in approximate posterior --> ELBO undefined



Variational Structured Dropout (VSD-our method)

❖ Intuition: "a richer representation for variational noise could enrich Dropout posterior expressiveness"

❖ Approach: 

● consider an original Dropout noise sampled from a Gaussian distribution:

● extract              and successively transform          through a chain of       Householder reflections

● inject structured noise         into deterministic weight      :
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ELBO

VSD



Variational Structured Dropout (VSD-our method)

❖ Contribution 1: VSD overcomes the singularity issue of approximate posterior in VD
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Variational Structured Dropout (VSD-our method)

❖ Contribution 1: VSD overcomes the singularity issue of approximate posterior in VD
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singular 
components

YesNo

is validly defined, but how to analyze ?



Variational Structured Dropout (VSD-our method)

❖ Approach (cont'd):

● consider isotropic Gaussian prior:    with  

● augment a mutual information term     to encourage correlations: 

          with

● use Empirical Bayes (EB) to specify     :
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Variational Structured Dropout (VSD-our method)

❖ Approach (cont'd):
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KL condition



Variational Structured Dropout (VSD-our method)

❖ Contribution 2: VSD is flexible in terms of both approximate posterior and prior distribution.

● expand hierarchically prior distribution:

● do joint inference with Dropout posterior:

● drawing         follows a hierarchical Dropout procedure:

● satisfy the KL condition.
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Variational Structured Dropout (VSD-our method)

❖ Contribution 2: VSD is flexible in terms of both approximate posterior and prior distribution.

● expand hierarchically prior distribution:

● do joint inference with Dropout posterior:

● drawing         follows a hierarchical Dropout procedure:

● satisfy the KL condition w/o further simplifying assumption
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Variational Structured Dropout (VSD-our method)

❖ Contribution 3: VSD induces an adaptive regularization with several desirable inductive biases
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VSD imposes a Tikhonov-like regularization 

and reshapes the gradient.

VSD penalizes implicitly the spectral norm 

of weight matrices
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VSD imposes a Tikhonov-like regularization 

and reshapes the gradient.

VSD penalizes implicitly the spectral norm 

of weight matrices

complementary 
advantages



Variational Structured Dropout (VSD-our method)

❖ Contribution 4: VSD gains noticeable empirical results compared to other variational methods.

● Regression task:
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❖ Contribution 4: VSD gains noticeable empirical results compared to other variational methods.

● Image classification task:
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Variational Structured Dropout (VSD-our method)

❖ Contribution 4: VSD gains noticeable empirical results compared to other variational methods.

● Predictive entropy:
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Variational Structured Dropout (VSD-our method)

❖ Contribution 4: VSD gains noticeable empirical results compared to other variational methods.

● OOD metrics:
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Variational Structured Dropout (VSD-our method)

❖ Contribution 5: VSD exhibits significant computational efficiency

45



Conclusion

❖ Introducing a novel Dropout Variational Inference framework for BNNs

Email: v.sonnv27@vinai.io
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