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Why need uncertainty in Deep Learning

% Uncertainty estimation: critical problem (applicable <-- reliable) in Intelligent Systems
e provide confidence along with prediction: the model knows what it doesn't know

e go beyond accuracy regime: toward model calibration in Deep Learning (DL)

s Applications: Input

e  Safety, Trustworthy systems: autonomous driving, J
Model

|

Confidence > Threshold

learning, Bayesian optimization, Decision making: /\
Yes No
trade off exploration-exploitation, stability-plasticity,

medical diagnosis, and meteorological forecasting.

e Active learning, Continual learning, Reinforcement
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What Bayesian Deep Learning

< Bayesian Deep Learning (BDL): general principle, structural probabilistic approach

Graphical Bavesi Neural
i i i i dels ’ - 1 Yol : nets
e intersection of Bayesian method and deep learning g

NNs
NPBayes o Deep ConvNets

generative
models

e Bayesian neural nets, deep latent variable models, and

GPs RNNs

BayesOpt VAEs Attention

related learning techniques are particular treatments of BDL. .
inference

GANs SGD

e Advances in BDL: Bayesian Deep Learning workshops e /e e Dropout
T Thomas Bayes Geoffrey Hinton
o In supervised tasks, BDL provide considerable improvements in accuracy and calibration compared to
standard training, while retaining scalability.

o

% A main goal: exploring a renowned class of BDL - Bayesian neural nets (BNNs)

e the core direction promoting the research of uncertainty quantification in DL
e but, has many controversies in the community


http://bayesiandeeplearning.org/index.html
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Background

% Source of uncertainty: [NeurlPS-17]

capture our ignorance about which model generated
our collected data

Model uncertainty, a.k.a | incurred by lack of training data, imbalanced/sparse
epistemic uncertainty | data, out-of-distribution data

reducible with more data
(vanish in the limit of infinite data)

capture noise inherent in the data

Data uncertainty, a.k.a

) i caused by inherent noise, ambiguous/missing data,
aleatoric uncertainty

human bias

irreducible with more data

Dirty-MNIST (iD)

MNIST Amblguous -MNIST

= ozq5b44nlﬂ

v



https://arxiv.org/abs/1703.04977

Background

% Disentangle types of uncertainty

e Disentangling and reasoning about uncertainty is critical, but non-trivial, for applications:

o active learning [NeurlPS-19]

o out-of-distribution detection

o semantic segmentation [NeurlPS-17]

o fraud detection, forecast


https://arxiv.org/abs/1906.08158
https://arxiv.org/abs/1703.04977

Background
% Disentangle types of uncertainty [UAI-18]

e epistemic and aleatoric uncertainty are distinguishable under Bayesian models:

Model parameters T}/ governed by a prior p(W), and p(W|D) is a posterior given the training data D
The predictive distribution for a new datapoint (z,y) is: P(y|z, D) = Eymwip)p(y|z, W)

o the predictive entropy H[y|x, D] of p(y|z, D) is defined by predictive uncertainty
o  predictive uncertainty is total uncertainty of epistemic and aleatoric uncertainty.

HY|o, D) = V3w o, D] + By BV fow]] s
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https://arxiv.org/abs/1803.08533

Background

% Metrics for uncertainty quantification

e How to represent uncertainty: heat map, predictive variance, predictive entropy (PDF, CDF).
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Background

% Metrics for uncertainty quantification
e How to measure the quality of uncertainty:
o predictive log-likelihood: Ez~p log|E,qyp)p(y|z, W)]
o calibration error (CE) [ICML-17]: suppose a model predict a class y with probability p

CE = |Prob(Y = y|p = p) — p|

Confidence > Accuracy
B

n
ECE = Z —b |acc(b) — conf(b)\ Confidence < Accuracy

b_l N 00 02 04 06 08 1.0 00 02 04 06 08 1.0
=> Underconfident

=> Qverconfident

Confidence

i
K
k

[M]=

B
SCE = Z % lacc(b, k) — conf(b, k)|

16=1

with acc(b, k) and conf(b, k) are the accuracy and confidence of bin b for class label k
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https://arxiv.org/abs/1706.04599

Background
s Common criticism of traditional neural nets uncertainty
e Trend: larger and more accurate models produce poorly calibrated predictions.
e Disentangle epistemic and aleatoric uncertainty is non-trivial: use softmax entropy in general.

e Softmax deterministic neural nets can not capture epistemic uncertainty: feature collapse (theory and empirical
results) --> extractor can map OOD sample to iD regions in feature space (local constant representation). [ICML-20]

Fully
Convolution Connected
Pooling _..———""""
Input B ..
El“ -:
Feature Extraction Classification

When training using empirical risk minimisation, features not relevant to classification accuracy can simply be

ignored by the feature extractors.
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https://arxiv.org/abs/2003.02037

Background

s Common criticism of traditional neural nets uncertainty

e NNs do not generalize well under distribution shift.

but, NNs do not know when they do not know.

Clean Severity = 1

Severity = 2 Severity = 3 Severity = 4 Severity = 5

Test 5

e Models assign high confidence

predictions to OOD data
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Summary

Source of uncertainty: epistemic (lack of data) and aleatoric (noise inherent)
e Disentangle epistemic and aleatoric is non-trivial, but possible with Bayesian models:

- v 1 _, -5
HY |z, D] = I[Y;w |z, D] + E yyvp) [H[Y |, w]] 0 T 00 |__ N
~~ o -~ ~ P(ylx".6W) P(ylx",00
predictive epistemic aleatoric (for iD ) : o
. . i o) = o) I
In Bayesian linear regression case: L LIt - el
P(y|x*,07) P(y|x*,D) P(ylx P(ylx*. D)
_ T 2 | o |
V(ylz, D) = ¢(z)" Xg(z) + o " I
6“— ‘mmm - R
P(ylx*,6M) P(ylx
A connection with bias-variance trade-off: y = f(x) + € high aleatoric high epistemic

EyE,w D) [Z/ — f(z,W)|D = Dtrain} g (f(w) Epwip) [J?( )})2 + Vo) [f(w,W)] +0o’

e Measure deep network models: predictive accuracy (generalization), likelihood/ECE/SCE (model calibration)
Criticisms of traditional deep learning uncertainty: poor generalization under distribution shift, uncalibrated and

overconfident prediction, inability to capture epistemic uncertainty (feature collapse) i3
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Main approaches

7
0‘0

Bayesian neural nets
treat weight parameters 1}/ as a random variable and impose a prior distribution p(W)
infer a posterior distribution over |}/ instead of point estimation:

p(DIW)p(W) _  p(DIW)p(W)
p(D) [ p(DIW)p(W)

p(W|D) =

At test time: predictive distribution is approximated via MC sampling:

ply [x D)= [ oty I WOHWID)aW Zpy x , W)
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Main approaches
s Bayesian neural nets

BNN posterior p(W|D) . intractable, very high dimensional, complicated structure --> approximate inference

e Gradient-based stochastic approximation:
o  energy-based perspective
o simulate dynamical systems whose stationary distribution as desired target distribution

o the true posterior samples is generated via discretizing differential equations describing those dynamics

Methods:

o  Hamiltonian Monte Carlo (HMC): gold standard
o  Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) (ICML-14)
o  Stochastic Gradient Langevin Dynamics (SGLD) (ICML-12)

Pros and Cons: high fidelity approximation,

bUt Iarge Com pIeXity, many pOtentiaI biases E)istribution Show temperature T:70,1 slide time: 100

- generated samples (L J—
F W o ° ) rejected samples animation: slow

true samples C
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https://arxiv.org/abs/1402.4102
https://www.researchgate.net/publication/221346425_Bayesian_Learning_via_Stochastic_Gradient_Langevin_Dynamics

Main approaches

s Bayesian neural nets

BNN posterior p(W|D): intractable, very high dimensional, complicated structure --> approximate inference
e Deterministic approximation: local approximation

o Laplace approximation (NeurlPS-21): p(W|D) = N (Wiap, H ') with H = 82 logp(y|z, W)/OW? + X\
o Variational inference: employ a parametric variational distribution ¢4 (' W') and minimize D g, (¢4(W)||p(W|D))

equivalent to maximizing variational lower bound:
L(¢) = Eq, w) logp(DIW) — D 1.(q5(W)|[p(W))

m Mean-field VI: %(W) is factorized distribution (e.g diagonal Gaussian)

[ [ Dropout inference: MC Dropout, Variational Gaussian Dropout --> complementary benefits ]

m  Subspace inference (UAI-19): inspired by effective dimensionality / intrinsic dimension in deep learning
S={W|W =W + ziv1+... +zgvg} = {W|W = W + Pz}

**sub-network (ICML-21): p(W|y, X) ~ p(Wgly, X H5 ~ q(Ws) []o(wr -
17


https://arxiv.org/abs/2106.14806
https://arxiv.org/abs/1907.07504
https://arxiv.org/abs/2010.14689

Main approaches

< Ensemble methods

e Deep ensemble (NeurlPS-16): training (regularized) MLE with different random seeds and averaging

final score
o inspired by classical ensemble methods: bootstrap, bagging, boosting

o loss landscape is highly non-convex --> different local optima --> explore the diversity from multimodality.

Test 1 4 5
Method
030 - oy Vanilla EEEEEN Dropout
025 . NEEEEE TempScaling [ LLDropout
BN Ensemble [ wsvi
0.20 -
w
v
w015 -
0.10 -
0.05 - E
_—l—

000 - : ; ; ; ; ; 18

Test

o very simple, but work surprisingly well in practice

<037 Method
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- I Temp Scaling /1 LL Dropout
) I Ensemble . LSV

(b) ImageNet
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https://arxiv.org/abs/1612.01474

Main approaches

% Ensemble methods
e Stochastic Weight Averaging Gaussian (SWAG) (NeurlPS-19)

o Motivated by the theory: SGD with constant learning rate simulates a Markov
chain with a stationary distribution --> SGD iterations is approximately sampling
from a Gaussian distribution (JMLR-17)

o Utilize SGD iterations {W; }~_, to empirically estimate first-two moments of a Gaussian: p(W|D) = N (i, X)

y= % S W =LY, <VVt _ Wt> (Wt — Wt)T [(‘F%diag (% 23;1 Wi — N2))}

. . Train loss
(@] .
Properties PreResNet-164 CIFAR-100

|
\ | | /
\ | | |

16

14

m require: SGD with large constant or cyclical learning rates 12
m  practical runtime ~ SGD training :ZZ
m  Averaging Weights Leads to Wider Optima and Better Generalization -

0.0

(SWA PyTorch lib) (ICML-18) R

Distance

Vi

v
V1o - V20 1 9
--®-- SWAG 30 region

m captures the local geometry of the posterior surprisingly well



https://arxiv.org/abs/1902.02476
https://arxiv.org/abs/1704.04289
https://arxiv.org/abs/1803.05407

Main approaches

% Deterministic uncertainty estimation (DUE)
Motivation: overcome limitations of softmax neural nets uncertainty

--> using only single forward-pass

20



Main approaches

% Deterministic uncertainty estimation (DUE)
e DUE with RBF network. (ICML-20)

o classes represented by centroids

o  predictive uncertainty computed via RBF kernel /\ ° Prediction

--> better than Deep ensemble uncertainty e
o use exponential moving average update to stabilize training %’ @

Bird

[_—IIW S — e||

--> achieve competitive accuracy softmax models.

o alleviate feature collapse with two-side Gradient penalty

m  sensitivity: capture changes in inputs LW, fo(x) — ec||g}

K, = —
m  smoothness: optimization & generalization e(fo(x), €c) = exp 202

L(X, Y) = Z Ye IOg(Kc) v (1 - yc) log(l - Kc)

[A' (Ve S, K2 — L] — Luflx1 — xallr < [[Ke(x1) — Ke(%2) || r < Lalx1 — %z }

o  What about softmax nets + enforcing-sensitivity ? 21


https://arxiv.org/abs/2003.02037

Main approaches

% Deterministic uncertainty estimation (DUE)

e DUE with softmax nets + inductive bias + feature-space density (arXiv-21).

o gradient penalty, spectral normalization are appropriate inductive biases enforcing sensitivity

o penalize spectral normal of deterministic networks weights, then:

m  softmax entropy can capture aleatoric uncertainty, but can not estimate epistemic uncertainty

m use feature-space density q(z), with 2 = fg (m) to capture epistemic uncertainty

m combine feature-space density and the softmax entropy via Gaussian Discriminant Analysis (GDA)

q(y, z) = q(y)q(z]y) ----> disentangle epistemic and aleatoric uncertainty

Dirty-MNIST (iD)

MNIST Amblguous MNIST | Sui
= OZQ5L':J.‘||IM .
Entropy
(a) Dirty-MNIST (iD) and Fash MNIST D) (b) Softmax entropy (MNIST vs Ambiguous-MNIST)
05 0.4 o '
- A | J i E
To B G, 502 I
M o A s g 1
oos s M = r & 01 1
. el Al
1 2 0 1 2 0 1 2 —200 —100 100 —1000 O 1000 2000 3000 -1000 0 1000 2000
Entropy LeNet Entropy VGG-16 Entropy ResNet18+SN Log Density LeNel Log Density VGG-16 Log Density ResNet18+SN

(c) Softmax entropy (d) Feature space density 22


https://arxiv.org/abs/2102.11582
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b. Bayesian model averaging
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The state-of-the-art and a unified view

% Deep ensemble and functional perspective (arXiv-20) T

e Consistent experimental results: Deep ensemble = 2
o  very simple, but work surprisingly well in practice
o  outperforms SWAG, practical BNNs approximations (MFVI, MC Dropout),
particularly under dataset shift.

; - Deep ensembles
o  but has much computational overhead - Sriapahot BissirioNs

- Cyclical SGLD

Multimodal methods:

e A functional perspective:

o desiderata from ensembling for a good approximation of predictive distribution:

[ high-performing but diverse ]

o
" similar predictions will be redundant in the model averaging
u crucial for quantifying epistemic uncertainty [NeurlPS-17]
o  Main point: deep ensembles tend to explore diverse modes in functional space. 0" —
o) __,

Loss landscape

Local methods:
- MC-dropout
- Variational inference
- K-FAC Laplace
- Fast geometric ensembling
- SWA-Gaussian

P(y\x oY)

(yx 6") P(y|x*. D)

P(ylx*.0M)

24


https://arxiv.org/abs/1912.02757
https://arxiv.org/abs/1703.04977

The state-of-the-art and a unified view

s Deep ensemble and functional perspective

e Similarity of functions within and across randomly initialized trajectories

SGD single trajectory
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The state-of-the-art and a unified view

Log-Likelihood
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-0.100
-0.125
=0.150
0175
-0.200
-0.225
-0.250

-0.275

t-SNE axis 2

Deep ensemble and functional perspective

Similarity of functions of local approximations from each trajectory and across trajectories
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The state-of-the-art and a unified view

7
0’0

Several variants of deep ensemble

Hyperparameter ensembles (NeurlPS-20): random search over different hyperparameters

o
o
5

Accuracy
© ©°
(0] (0]
o N

N

4 6 8 10 12 14 16

>

Q.

© 0.8 - hyper-deep ensemble
g = deep ensemble

%]

%]

© 0.6

(@]

2 4 6 8 10 12 14 16
Ensemble size
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https://arxiv.org/abs/2006.13570

The state-of-the-art and a unified view

Several variants of deep ensemble: inspired by sharing parameters

One shared ...multiplied by ...yields ensemble

weight matrix independent rank weight matrices for

Batch ensemble (ICLR-20): efficient ensembles by sharing parameters (dlow weight)..  one fast weights.. ach member.
- - s/
. AR
o i ry T
= ¢ ((W o TiS’LT) xn) para”ellze i -1 0 1
o I -
— (W (znor))os) Y =¢((XoR)W)oS) " . _ ﬁ S

Rank 1 - BNNs (ICML-20): learn rank-1 perturbation via variational inference,
exploit hierarchical prior with non-centered parameterization

L= _Eq(T)q(s) logp(D|W7 r, 8)

+KL(g(r)[[p(r)) + KL(g(s)|[p(s)) — log p(W)

p(ri) = Normal

p(r;) = Cauchy; p(w;) = Horseshoe
p(r?) = InverseGamma; p(w;) =T
p(wj) = Normal
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https://arxiv.org/abs/2002.06715
https://arxiv.org/abs/2005.07186

The state-of-the-art and a unified view

7

% Several variants of deep ensemble: inspired by loss landscape

e Snapshot ensemble (ICLR-17): training SGD with cyclicial learning rate schedule --> train 1, get M for free

Cifar10 (L=100,k=24, B=300 epochs)
—— Standard Ir scheduling 05
—— Cosine annealing with restart Ir 0.1

10° 1 [} 1 I I

1 | | | | os
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ALY

Cyclic LR Schedule
A

Training loss
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10 1 I 1 1
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Epochs

Fast Geometric Ensemble (NeurlPS-18): ensembling over low-loss tunnel connecting two minima --> cost of
conventional training

Polygonal chain: ¢y(t) = { ggfffé%‘;,; Qﬁ(}i)_’ £)0), 8

Bezier curve:  ¢y(t) = (1 —t)%b; + 2t(1 — )8 + %1, 0 <t < 1.

|
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& 'olychain o\o ‘olychain e\c . . .
815 T o not need different minima.
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https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026

The state-of-the-art and a unified view

o

% Bayesian model averaging: unifying ensemble and Bayes

Bayes vs Ensembles: What's the difference?

Both aggregate predictions over a collection of models. There are two core distinctions.

The space of models.

Bayes posits a prior that weighs different Ensembles weigh functions equally a priori and
probability to different functions, and over an use a finite collection
infinite collection of functions.

Model aggregation.
Bayesian models apply averaging, weighted by Ensembles can apply any strategy and have
the posterior. non-probabilistic interpretations.

--> but all for same goal: to compute an accurate predictive distribution
--> do not need samples from a posterior, or even a faithful approximation to the posterior.
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The state-of-the-art and a unified view

X/

< Bayesian model averaging (NeurlPS-20): unifying ensemble and Bayes

e derived from marginalization procedure: key distinguishing property of Bayesian method.

e an ensemble containing many high-performing but diverse models:

[ p(ylz,D) = /P(y|wi)p(w|D)dw}

o  consider the BMA integral separately from the simple Monte Carlo approximation in BNNs

o  Deep ensemble is non-Bayesian method, but can be treated as a compelling approach of BMA:

»—~ Deep Ensembles
o o o SVI

-05

0 10 20 30 40 50
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 # Samples

(a) Exact (b) Deep Ensembles (¢) Variational Inference (d) Discrepancy with True BMA
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https://arxiv.org/abs/2002.08791

The state-of-the-art and a unified perspective

s Bayesian model averaging: unifying ensemble and Bayes

Why BMA is actually compelling for deep learning ?

p(w|D)

motivated by classical theory of statistical models
evidenced by extensive empirical results
provide complementary benefits:

p(ylw)

Ensemble MC-Dropout, Multi-SWAG, Multi-SWA

dist(p, q)
(Ensemble + local approximate/SWA can outperform Deep ensemble) lw

i w
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The state-of-the-art and a unified perspective

S

Why BMA is actually compelling for deep learning ?

[ ]
Training Function
A ! Testing Function
f(@)
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Keskar et. al, ICLR 2017.
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.
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% Bayesian model averaging: unifying ensemble and Bayes

provide intriguing perspectives on many problems of deep learning

under-parameterized

Test risk

“classical”

over-parameterized

“modern”
interpolating regime

~ Training risk:
B . _interpolation threshold
— i P

Capacity of H

<y
o 26 i # SWAG Models
24 5
o428 R
X 22 wi
400 pur} o
<] =20 D w0
s oars — o i
18
42350 ° 9
) Fig 5. J <3
225 =
14 7}
300 =]
12 =%
275 =

50 10 20 30 40 50

ResNet-18 width

(d) Corrupted (NLL)

10 20 30 40 50

ResNet-18 width

(e) Corrupted (# Models)

10 20 30 40
ResNet-18 width

(c) Corrupted (Err)

33



Content

A. Uncertainty in Deep Learning

Background

Main approaches

The state-of-the-art and a unified perspective
Some potential research
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Some potential research

7
L X4

Some comments:

robustness: improving accuracy & model calibration under distribution shift is challenging, but prerequisite

in practice

subspace inference:

o  motivated by loss landscape characteristics

o  suggests integrating Bayesian-like layers into deep architectures.

explore functional behaviors --> understanding posterior predictive distribution

o  functional-space inference in BNNs
m  avoid drawbacks and controversies of weight-space inference
o  connect to kernel learning (via NTK for example)
m /oss landscape geometry, training dynamics, optimization on distributional space

o combine kernel-based Bayesian principles with deep learning
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Some potential research

s Beyond principled approaches: Stop thinking about just probability distributions.
Leverage the inductive biases of core DL techniques > improve significantly model calibration.

e test-time data augmentation

e mixup training: € = ax1 + (1 — a)ze,y = ays + (1 — a)ys

e more modern and more accurate architectures (arXiv-21): MLP-Mixer, Vision Transformer —-> reversed trends
o in-distribution: calibration slightly deteriorates with increasing model size

o under distribution shift: accuracy and calibration are correlated, calibration improves with model size
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https://arxiv.org/abs/2106.07998
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B. Bayesian neural network and its controversies

Why Bayesian neural nets

Expressive or simple approximate posterior distribution
Tempered or original true posterior distribution
Informative or vague prior distribution
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