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Why need uncertainty in Deep Learning

❖ Uncertainty estimation: critical problem (applicable <-- reliable) in Intelligent Systems

● provide confidence along with prediction: the model knows what it doesn't know

● go beyond accuracy regime: toward model calibration in Deep Learning (DL)

❖ Applications:
● Safety, Trustworthy systems: autonomous driving, 

medical diagnosis, and meteorological forecasting. 

● Active learning, Continual learning, Reinforcement 

learning, Bayesian optimization, Decision making: 

trade off exploration-exploitation, stability-plasticity, 

memorization-adaptation
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What Bayesian Deep Learning

❖ Bayesian Deep Learning (BDL): general principle, structural probabilistic approach

● intersection of Bayesian method and deep learning

● Bayesian neural nets, deep latent variable models, and 

               related learning techniques are particular treatments of BDL.

● Advances in BDL: Bayesian Deep Learning workshops

○ In supervised tasks, BDL provide considerable improvements in accuracy and calibration compared to 
standard training, while retaining scalability.

❖ A main goal: exploring a renowned class of BDL - Bayesian neural nets (BNNs)

● the core direction promoting the research of uncertainty quantification in DL
● but, has many controversies in the community
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http://bayesiandeeplearning.org/index.html
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Background
❖ Source of uncertainty: [NeurIPS-17]

Model uncertainty, a.k.a 
epistemic uncertainty

capture our ignorance about which model generated 
our collected data

incurred by lack of training data, imbalanced/sparse 
data, out-of-distribution data

reducible with more data                                   
(vanish in the limit of infinite data)

Data uncertainty, a.k.a 
aleatoric uncertainty

capture noise inherent in the data

caused by inherent noise, ambiguous/missing data, 
human bias

irreducible with more data
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https://arxiv.org/abs/1703.04977


Background
❖ Disentangle types of uncertainty
● Disentangling and reasoning about uncertainty is critical, but non-trivial, for applications: 

○ active learning [NeurIPS-19]

○ out-of-distribution detection 

○ semantic segmentation [NeurIPS-17]

○ fraud detection, forecast

7

https://arxiv.org/abs/1906.08158
https://arxiv.org/abs/1703.04977


Background
❖ Disentangle types of uncertainty [UAI-18]
● epistemic and aleatoric uncertainty are distinguishable under Bayesian models:

Model parameters       governed by a prior          , and                is a posterior given the training data             

The predictive distribution for a new datapoint            is:

○ the predictive entropy  of            is defined by predictive uncertainty

○ predictive uncertainty is total uncertainty of epistemic and aleatoric uncertainty.

In Bayesian linear regression case:
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https://arxiv.org/abs/1803.08533


Background
❖ Metrics for uncertainty quantification
● How to represent uncertainty: heat map, predictive variance, predictive entropy (PDF, CDF).
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Background
❖ Metrics for uncertainty quantification
● How to measure the quality of uncertainty:

○ predictive log-likelihood:

○ calibration error (CE) [ICML-17]: suppose a model predict a class y with probability

 

       with and                  are the accuracy and confidence of bin b for class label k 
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https://arxiv.org/abs/1706.04599


Background
❖ Common criticism of traditional neural nets uncertainty

● Trend: larger and more accurate models produce poorly calibrated predictions.

● Disentangle epistemic and aleatoric uncertainty is non-trivial: use softmax entropy in general.

● Softmax deterministic neural nets can not capture epistemic uncertainty: feature collapse (theory and empirical 
results) --> extractor can map OOD sample to iD regions in feature space (local constant representation). [ICML-20]

 When training using empirical risk minimisation, features not relevant to classification accuracy can simply be 

ignored by the feature extractors.
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https://arxiv.org/abs/2003.02037


Background
❖ Common criticism of traditional neural nets uncertainty

● NNs do not generalize well under distribution shift. 

but, NNs do not know when they do not know.

● Models assign high confidence 
predictions to OOD data
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Summary
● Source of uncertainty: epistemic (lack of data) and aleatoric (noise inherent)
● Disentangle epistemic and aleatoric is non-trivial, but possible with Bayesian models:

In Bayesian linear regression case:

A connection with bias-variance trade-off:

● Measure deep network models: predictive accuracy (generalization), likelihood/ECE/SCE (model calibration)
● Criticisms of traditional deep learning uncertainty: poor generalization under distribution shift, uncalibrated and 

overconfident prediction, inability to capture epistemic uncertainty (feature collapse)
13
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Main approaches

❖ Bayesian neural nets
● treat weight parameters        as a random variable and impose a prior distribution 

● infer a posterior distribution over      instead of point estimation:

●  At test time: predictive distribution is approximated via MC sampling:
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Main approaches
❖ Bayesian neural nets

BNN posterior                 : intractable, very high dimensional, complicated structure -->  approximate inference 

● Gradient-based stochastic approximation: 

○ energy-based perspective

○ simulate dynamical systems whose stationary distribution as desired target distribution

○ the true posterior samples is generated via discretizing differential equations describing those dynamics

Methods:

○ Hamiltonian Monte Carlo (HMC): gold standard

○ Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) (ICML-14)

○ Stochastic Gradient Langevin Dynamics (SGLD) (ICML-12)

Pros and Cons: high fidelity approximation,                                                     

but large complexity, many potential biases
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https://arxiv.org/abs/1402.4102
https://www.researchgate.net/publication/221346425_Bayesian_Learning_via_Stochastic_Gradient_Langevin_Dynamics


Main approaches
❖ Bayesian neural nets

BNN posterior               : intractable, very high dimensional, complicated structure -->  approximate inference 

● Deterministic approximation: local approximation

○ Laplace approximation (NeurIPS-21):   with 

○ Variational inference: employ a parametric variational distribution       ,     and minimize               --> 

equivalent to maximizing variational lower bound:

■ Mean-field VI:                 is factorized distribution (e.g diagonal Gaussian)

■ Dropout inference: MC Dropout, Variational Gaussian Dropout --> complementary benefits

■ Subspace inference (UAI-19): inspired by effective dimensionality /  intrinsic dimension in deep learning

  **sub-network (ICML-21):
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https://arxiv.org/abs/2106.14806
https://arxiv.org/abs/1907.07504
https://arxiv.org/abs/2010.14689


Main approaches
❖ Ensemble methods
● Deep ensemble (NeurIPS-16): training (regularized) MLE with different random seeds and averaging 

final score

○ inspired by classical ensemble methods: bootstrap, bagging, boosting

○ loss landscape is highly non-convex --> different local optima --> explore the diversity from multimodality.

○ very simple, but work surprisingly well in practice
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https://arxiv.org/abs/1612.01474


Main approaches
❖ Ensemble methods
● Stochastic Weight Averaging Gaussian (SWAG) (NeurIPS-19)

○ Motivated by the theory: SGD with constant learning rate simulates a Markov 
chain with a stationary distribution --> SGD iterations is approximately sampling 
from a Gaussian distribution (JMLR-17)

○ Utilize SGD iterations             to empirically estimate first-two moments of a Gaussian: 

  

○ Properties:

■ require: SGD with large constant or cyclical learning rates

■ practical runtime ~ SGD training

■ Averaging Weights Leads to Wider Optima and Better Generalization 

(SWA PyTorch lib) (ICML-18)

■ captures the local geometry of the posterior surprisingly well 19

https://arxiv.org/abs/1902.02476
https://arxiv.org/abs/1704.04289
https://arxiv.org/abs/1803.05407


Main approaches
❖ Deterministic uncertainty estimation (DUE)

          Motivation: overcome limitations of softmax neural nets uncertainty 

  --> using only single forward-pass
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Main approaches
❖ Deterministic uncertainty estimation (DUE)
● DUE with RBF network. (ICML-20)

○ classes represented by centroids
○ predictive uncertainty computed via RBF kernel 

-->  better than Deep ensemble uncertainty

○ use exponential moving average update to stabilize training 

-->  achieve competitive accuracy softmax models.

○ alleviate feature collapse with two-side Gradient penalty
■ sensitivity: capture changes in inputs

■ smoothness: optimization & generalization

     

  

○ What about softmax nets + enforcing-sensitivity ? 21

https://arxiv.org/abs/2003.02037


Main approaches
❖ Deterministic uncertainty estimation (DUE)
● DUE with softmax nets + inductive bias + feature-space density (arXiv-21).

○ gradient penalty, spectral normalization are appropriate inductive biases enforcing sensitivity

○ penalize spectral normal of deterministic networks weights, then:

■ softmax entropy can capture aleatoric uncertainty, but can not estimate epistemic uncertainty

■ use feature-space density          , with                       to capture epistemic uncertainty 

■ combine feature-space density and the softmax entropy via Gaussian Discriminant Analysis (GDA)             

                                             ---->  disentangle epistemic and aleatoric uncertainty
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https://arxiv.org/abs/2102.11582
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The state-of-the-art and a unified view
❖ Deep ensemble and functional perspective (arXiv-20)

● Consistent experimental results: Deep ensemble 

○ very simple, but work surprisingly well in practice

○ outperforms SWAG, practical BNNs approximations (MFVI, MC Dropout), 

         particularly under dataset shift.

○ but has much computational overhead

● A functional perspective:

○ desiderata from ensembling for a good approximation of predictive distribution:  

                     high-performing but diverse

■ similar predictions will be redundant in the model averaging

■ crucial for quantifying epistemic uncertainty [NeurIPS-17]

○ Main point: deep ensembles tend to explore diverse modes in functional space.
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https://arxiv.org/abs/1912.02757
https://arxiv.org/abs/1703.04977


The state-of-the-art and a unified view
❖ Deep ensemble and functional perspective

● Similarity of functions within and across randomly initialized trajectories

 SGD single trajectory  Deep Ensemble
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The state-of-the-art and a unified view
❖ Deep ensemble and functional perspective

● Similarity of functions of local approximations from each trajectory and across trajectories

● Accuracy as a function of ensemble size
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The state-of-the-art and a unified view

❖ Several variants of deep ensemble
● Hyperparameter ensembles (NeurIPS-20): random search over different hyperparameters
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https://arxiv.org/abs/2006.13570


The state-of-the-art and a unified view

❖ Several variants of deep ensemble: inspired by sharing parameters

● Batch ensemble (ICLR-20): efficient ensembles by sharing parameters

● Rank 1 - BNNs (ICML-20): learn rank-1 perturbation via variational inference, 
exploit hierarchical prior with non-centered parameterization 

parallelize
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https://arxiv.org/abs/2002.06715
https://arxiv.org/abs/2005.07186


The state-of-the-art and a unified view
❖ Several variants of deep ensemble: inspired by loss landscape

● Snapshot ensemble (ICLR-17): training SGD with cyclicial learning rate schedule --> train 1, get M for free

● Fast Geometric Ensemble (NeurIPS-18): ensembling over low-loss tunnel connecting two minima --> cost of 
conventional training
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Polygonal chain:

Bezier curve:

** high-performing but diverse ensemble    
    not need different minima.

https://arxiv.org/abs/1704.00109
https://arxiv.org/abs/1802.10026


The state-of-the-art and a unified view
❖ Bayesian model averaging: unifying ensemble and Bayes

        --> but all for same goal: to compute an accurate predictive distribution 
        --> do not need samples from a posterior, or even a faithful approximation to the posterior.
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The state-of-the-art and a unified view
❖ Bayesian model averaging (NeurIPS-20): unifying ensemble and Bayes

● derived from marginalization procedure: key distinguishing property of Bayesian method.

● an ensemble containing many high-performing but diverse models:

○ consider the BMA integral separately from the simple Monte Carlo approximation in BNNs

○ Deep ensemble is non-Bayesian method, but can be treated as a compelling approach of BMA:
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https://arxiv.org/abs/2002.08791


The state-of-the-art and a unified perspective
❖ Bayesian model averaging: unifying ensemble and Bayes

Why BMA is actually compelling for deep learning ?

● motivated by classical theory of statistical models
● evidenced by extensive empirical results
● provide complementary benefits: 

                      Ensemble MC-Dropout, Multi-SWAG, Multi-SWA

               (Ensemble + local approximate/SWA can outperform Deep ensemble)
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The state-of-the-art and a unified perspective
❖ Bayesian model averaging: unifying ensemble and Bayes

Why BMA is actually compelling for deep learning ?

● provide intriguing perspectives on many problems of deep learning
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Some potential research

❖ Some comments:
● robustness: improving accuracy & model calibration under distribution shift is challenging, but prerequisite 

in practice

● subspace inference:

○ motivated by loss landscape characteristics

○ suggests integrating Bayesian-like layers into deep architectures.

● explore functional behaviors --> understanding posterior predictive distribution

○ functional-space inference in BNNs

■ avoid drawbacks and controversies of weight-space inference

○ connect to kernel learning (via NTK for example)

■ loss landscape geometry, training dynamics, optimization on distributional space  

○ combine kernel-based Bayesian principles with deep learning
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Some potential research
❖ Beyond principled approaches: Stop thinking about just probability distributions. 

Leverage the inductive biases of core DL techniques --> improve significantly model calibration.

● test-time data augmentation

● mixup training:

● more modern and more accurate architectures (arXiv-21): MLP-Mixer, Vision Transformer --> reversed trends

○ in-distribution: calibration slightly deteriorates with increasing model size

○ under distribution shift: accuracy and calibration are correlated, calibration improves with model size
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https://arxiv.org/abs/2106.07998
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