Uncertainty in Deep Learning & The case of Bayesian Deep Learning

Presenter: Son Nguyen

Machine Learning Group, VinAl Research

Why need uncertainty in Deep Learning

- Uncertainty estimation: critical problem (applicable <-- reliable) in Intelligent Systems</p>
 - provide **confidence** along with prediction: *the model knows what it doesn't know*
 - go beyond **accuracy** regime: toward **model calibration** in Deep Learning (DL)

Applications:

- Safety, Trustworthy systems: *autonomous driving, medical diagnosis, and meteorological forecasting.*
- Active learning, Continual learning, Reinforcement learning, Bayesian optimization, Decision making: *trade off exploration-exploitation, stability-plasticity, memorization-adaptation*

What Bayesian Deep Learning

- Sayesian Deep Learning (BDL): general principle, structural probabilistic approach
 - intersection of Bayesian method and deep learning
 - Bayesian neural nets, deep latent variable models, and
 - *related learning techniques* are particular treatments of BDL.
 - Advances in BDL: <u>Bayesian Deep Learning workshops</u>

 In supervised tasks, BDL provide considerable improvements in *accuracy and calibration* compared to standard training, while retaining scalability.

- A main goal: exploring a renowned class of BDL Bayesian neural nets (BNNs)
 - the core direction promoting the research of uncertainty quantification in DL
 - but, has many controversies in the community

Content

A. Uncertainty in Deep Learning

- 1. Background
- 2. Main approaches
- 3. The state-of-the-art and a unified perspective
- 4. Some potential research

B. Bayesian neural network and its controversies

- 1. Why Bayesian neural nets
- 2. Expressive or simple approximate posterior distribution
- 3. Tempered or original true posterior distribution
- 4. Informative or vague prior distribution

This presentation involves various works of Yarin Gal (OATML), Andrew G. Wilson (NYU), B. Lakshminarayanan (Google), Dustin Tran (Google), Max Welling (UvA) and many others.

Content

A. Uncertainty in Deep Learning

- 1. Background
 - a. Sources of uncertainty
 - b. Disentangle types of uncertainty
 - c. Metrics for uncertainty quantification
 - d. Common criticism of traditional neural nets uncertainty
- 2. Main approaches
- 3. The state-of-the-art and a unified perspective
- 4. Some potential research

Source of uncertainty: [NeurIPS-17] *

Model uncertainty, a.k.a epistemic uncertainty	capture our ignorance about which model generated our collected data	X ₂
	incurred by lack of training data, imbalanced/sparse data, out-of-distribution data	
	reducible with more data (vanish in the limit of infinite data)	
Data uncertainty, a.k.a aleatoric uncertainty	capture noise inherent in the data	mart
	caused by inherent noise, ambiguous/missing data, human bias	**
	irreducible with more data	7.

6

X1

0

O

olare also piro cat deer dog hoppose anit tuch

0

- Disentangle types of uncertainty
- Disentangling and reasoning about uncertainty is critical, but **non-trivial**, for applications:
 - o active learning [NeurIPS-19]
 - out-of-distribution detection
 - semantic segmentation [NeurIPS-17]
 - fraud detection, forecast

- Disentangle types of uncertainty [UAI-18]
- epistemic and aleatoric uncertainty are *distinguishable under Bayesian models:*

Model parameters W governed by a prior p(W), and p(W|D) is a posterior given the training data DThe predictive distribution for a new datapoint (x, y) is: $p(y|x, D) = \mathbb{E}_{p(W|D)}p(y|x, W)$

- \circ the predictive entropy $\mathbb{H}[y|x,\mathcal{D}]$ of $\,p(y|x,\mathcal{D})$ is defined by predictive uncertainty
- predictive uncertainty is total uncertainty of epistemic and aleatoric uncertainty.

- Metrics for uncertainty quantification
- How to represent uncertainty: heat map, predictive variance, predictive entropy (PDF, CDF).

- Metrics for uncertainty quantification
- How to measure the quality of uncertainty:
 - \circ predictive log-likelihood: $\mathbb{E}_{x\sim\mathcal{D}}\log[\mathbb{E}_{p(W|\mathcal{D})}p(y|x,W)]$
 - calibration error (CE) [ICML-17]: suppose a model predict a class y with probability \hat{p}

$$CE = |Prob(Y = y|\hat{p} = p) - p|$$

$$ECE = \sum_{b=1}^{B} \frac{n_b}{N} |acc(b) - conf(b)|$$

$$Confidence < Accuracy$$

$$=> Underconfident$$

SCE =
$$\frac{1}{K} \sum_{k=1}^{K} \sum_{b=1}^{B} \frac{n_{bk}}{N} |\operatorname{acc}(b,k) - \operatorname{conf}(b,k)|$$

with $\operatorname{acc}(b,k)$ and $\operatorname{conf}(b,k)$ are the accuracy and confidence of bin b for class label k

- Common criticism of traditional neural nets uncertainty
- **Trend**: larger and more accurate models produce poorly calibrated predictions.
- **Disentangle** epistemic and aleatoric uncertainty is non-trivial: use **softmax entropy** in general.
- **Softmax** deterministic neural nets can not capture epistemic uncertainty: **feature collapse** (theory and empirical results) --> extractor can map OOD sample to iD regions in feature space (*local constant representation*). [ICML-20]

When training using empirical risk minimisation, *features not relevant to classification accuracy* can simply be ignored by the feature extractors.

- Common criticism of traditional neural nets uncertainty
- NNs do not generalize well under **distribution shift.** but, NNs do not know when they do not know.

• Models assign high confidence predictions to OOD data

Summary

- Source of uncertainty: epistemic (lack of data) and aleatoric (noise inherent)
- **Disentangle epistemic** and **aleatoric** is non-trivial, but possible with Bayesian models:

- Measure deep network models: predictive accuracy (generalization), likelihood/ECE/SCE (model calibration)
- **Criticisms** of traditional deep learning uncertainty: poor generalization under distribution shift, uncalibrated and overconfident prediction, inability to capture epistemic uncertainty (feature collapse)

Content

A. Uncertainty in Deep Learning

- 1. Background
- 2. Main approaches
 - a. Bayesian neural nets
 - b. Ensemble methods
 - c. Deterministic uncertainty estimation
- 3. The state-of-the-art and a unified perspective
- 4. Some potential research

Bayesian neural nets

- treat weight parameters W as a random variable and impose a prior distribution p(W)
- infer a posterior distribution over W instead of point estimation:

$$p(\mathbf{W}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{W})p(W)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\mathbf{W})p(W)}{\int p(\mathcal{D}|\mathbf{W})p(\mathbf{W})}$$

• At test time: predictive distribution is approximated via **MC sampling**:

$$p(\mathbf{y} \mid \mathbf{x}, \mathcal{D}) = \int p(\mathbf{y} \mid \mathbf{x}, \mathbf{W}) p(\mathbf{W} \mid \mathcal{D}) d\mathbf{W} = \frac{1}{S} \sum_{s=1}^{S} p(\mathbf{y} \mid \mathbf{x}, \mathbf{W}^{(s)})$$

XXXX

Bayesian neural nets

BNN posterior p(W|D): intractable, very high dimensional, complicated structure --> approximate inference

• Gradient-based stochastic approximation:

- energy-based perspective
- simulate dynamical systems whose stationary distribution as desired target distribution
- the true posterior samples is generated via discretizing differential equations describing those dynamics

Methods:

- Hamiltonian Monte Carlo (HMC): gold standard
- Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) (ICML-14)
- Stochastic Gradient Langevin Dynamics (SGLD) (<u>ICML-12</u>)

Pros and Cons: high fidelity approximation,

but large complexity, many potential biases

Bayesian neural nets

BNN posterior p(W|D): intractable, very high dimensional, complicated structure --> approximate inference

- Deterministic approximation: local approximation
 - \circ Laplace approximation (NeurlPS-21): $p(W|\mathcal{D}) = \mathcal{N}(W_{MAP}, H^{-1})$ with $H = \partial^2 \log p(y|x,W)/\partial W^2 + \lambda I$
 - Variational inference: employ a parametric variational distribution $q_{\phi}(\mathbf{W})$ and minimize $\mathbb{D}_{KL}(q_{\phi}(\mathbf{W}) \| p(\mathbf{W} | \mathcal{D}))$ equivalent to maximizing variational lower bound:

$$\mathcal{L}(\phi) = \mathbb{E}_{q_{\phi}(\mathbf{W})} \log p(\mathcal{D}|\mathbf{W}) - \mathbb{D}_{KL}(q_{\phi}(\mathbf{W}) || p(\mathbf{W}))$$

- Mean-field VI: $q_{\phi}(\mathbf{W})$ is factorized distribution (e.g diagonal Gaussian)
- **Dropout inference:** MC Dropout, Variational Gaussian Dropout --> **complementary** benefits
- Subspace inference (UAI-19): inspired by effective dimensionality / intrinsic dimension in deep learning

$$\mathcal{S}=\{W|W=\widehat{W}+z_1v_1+\ldots+z_Kv_K\}=\{W|W=\widehat{W}+Pz\}$$

**sub-network (ICML-21): $p(\mathbf{W}|\boldsymbol{y}, \boldsymbol{X}) \approx p(\mathbf{W}_S|\boldsymbol{y}, \boldsymbol{X}) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*) \approx q(\mathbf{W}_S) \prod_r \delta(\mathbf{w}_r - \mathbf{w}_r^*)$

- Ensemble methods
- **Deep ensemble** (<u>NeurIPS-16</u>): training (regularized) MLE with different random seeds and averaging final score
 - inspired by classical ensemble methods: bootstrap, bagging, boosting
 - loss landscape is highly non-convex --> different local optima --> explore the diversity from multimodality.
 - very simple, but work surprisingly well in practice

- Ensemble methods
- Stochastic Weight Averaging Gaussian (SWAG) (<u>NeurIPS-19</u>)
 - Motivated by the theory: SGD with constant learning rate simulates a Markov chain with a stationary distribution --> SGD iterations is approximately sampling from a Gaussian distribution (<u>JMLR-17</u>)
- Utilize SGD iterations $\{W_i\}_{i=1}^T$ to empirically estimate *first-two moments* of a Gaussian: $p(W|\mathcal{D}) = \mathcal{N}(\mu, \Sigma)$

$$\mu = rac{1}{T}\sum_t W_t \qquad \Sigma = rac{1}{T-1}\sum_t \left(W_t - \overline{W}_t
ight) \left(W_t - \overline{W}_t
ight)^T \ \left(\left(+rac{1}{T} ext{diag}\left(rac{1}{T}\sum_{i=1}^T W_i^2 - \mu^2
ight)
ight)
ight)$$

• **Properties:**

- require: SGD with *large constant* or *cyclical learning rates*
- practical runtime ~ SGD training
- Averaging Weights Leads to Wider Optima and Better Generalization (SWA PyTorch lib) (ICML-18)
- captures the local geometry of the posterior surprisingly well

Deterministic uncertainty estimation (DUE)

Motivation: overcome limitations of softmax neural nets uncertainty

--> using only single forward-pass

- Deterministic uncertainty estimation (DUE)
- DUE with RBF network. (ICML-20)
 - classes represented by centroids
 - predictive uncertainty computed via RBF kernel
 - --> better than Deep ensemble uncertainty
 - use exponential moving average update to stabilize training
 - --> achieve competitive accuracy softmax models.
 - alleviate feature collapse with two-side Gradient penalty
 - sensitivity: capture changes in inputs
 - smoothness: optimization & generalization

$$K_c(f_{\theta}(\mathbf{x}), \mathbf{e}_c) = \exp\left[-\frac{\frac{1}{n} ||\mathbf{W}_c f_{\theta}(\mathbf{x}) - \mathbf{e}_c||_2^2}{2\sigma^2}\right]$$
$$L(\mathbf{x}, \mathbf{y}) = -\sum_c y_c \log(K_c) + (1 - y_c) \log(1 - K_c)$$

 $\lambda \cdot \left[\|
abla_{\mathbf{x}} \sum_{c} K_{c} \|_{2}^{2} - L
ight]^{2} \longrightarrow L_{1} \| \mathbf{x}_{1} - \mathbf{x}_{2} \|_{I} \leq \| K_{c}(\mathbf{x}_{1}) - K_{c}(\mathbf{x}_{2}) \|_{F} \leq L_{2} \| \mathbf{x}_{1} - \mathbf{x}_{2} \|_{I}$

• What about softmax nets + enforcing-sensitivity ?

- Deterministic uncertainty estimation (DUE)
- DUE with softmax nets + inductive bias + feature-space density (<u>arXiv-21</u>).
 - o gradient penalty, spectral normalization are appropriate inductive biases enforcing sensitivity
 - penalize spectral normal of deterministic networks weights, then:
 - **softmax entropy** can capture aleatoric uncertainty, but can not estimate epistemic uncertainty
 - use feature-space density q(z), with $z=f_{ heta}(x)$ to capture epistemic uncertainty
 - combine feature-space density and the softmax entropy via Gaussian Discriminant Analysis (GDA)

q(y,z) = q(y)q(zert y) ----> disentangle epistemic and aleatoric uncertainty

Content

A. Uncertainty in Deep Learning

- 1. Background
- 2. Main approaches
- 3. The state-of-the-art and a unified view
 - a. Deep ensemble and variants
 - b. Bayesian model averaging
- 4. Some potential research

- * Deep ensemble and functional perspective (arXiv-20)
- Consistent experimental results: Deep ensemble
 - very simple, but work surprisingly well in practice Ο
 - outperforms SWAG, practical BNNs approximations (MFVI, MC Dropout), 0 particularly under dataset shift.
 - but has much computational overhead 0
- A functional perspective:
 - desiderata from ensembling for a good approximation of predictive distribution: Ο

high-performing but diverse

- similar predictions will be redundant in the model averaging
- crucial for quantifying epistemic uncertainty [NeurlPS-17]
- Main point: deep ensembles tend to explore diverse modes in functional space. Ο

....

Deep ensemble and functional perspective

• Similarity of functions *within and across* randomly initialized trajectories

SGD single trajectory

(a) Cosine similarity of weights

(b) Disagreement of predictions

$$\cos(W_1,W_2) = rac{W_1^T W_2}{\|W_1\| * \|W_2\|} \quad rac{1}{N} \sum_{n=1}^N [f(x_n;W_1)
eq f(x_n;W_2)]$$

Deep Ensemble

(a) Results using SmallCNN

(b) Results using ResNet20v1

Deep ensemble and functional perspective

• Similarity of functions of local approximations from each trajectory and across trajectories

26

• Accuracy as a function of ensemble size

- Several variants of deep ensemble
- Hyperparameter ensembles (<u>NeurIPS-20</u>): random search over different hyperparameters

- Several variants of deep ensemble: *inspired by* <u>sharing parameters</u>
- Batch ensemble (ICLR-20): efficient ensembles by sharing parameters

$$y_{n} = \phi\left(\overline{W}_{i}^{\top}x_{n}\right)$$

= $\phi\left(\left(W \circ r_{i}s_{i}^{\top}\right)^{\top}x_{n}\right) \xrightarrow{\text{parallelize}}$
= $\phi\left(\left(W^{\top}(x_{n} \circ r_{i})\right) \circ s_{i}\right) \xrightarrow{Y} = \phi\left(\left((X \circ R)W\right) \circ S\right)$

• Rank 1 - BNNs (<u>ICML-20</u>): learn rank-1 perturbation via variational inference, exploit hierarchical prior with non-centered parameterization

$$egin{aligned} \mathcal{L} &= -\mathbb{E}_{q(r)q(s)}\log p(\mathcal{D}|W,r,s) \ &+ \mathbb{KL}(q(r)\|p(r)) + \mathbb{KL}(q(s)\|p(s)) - \log p(W) \end{aligned}$$

- Several variants of deep ensemble: inspired by loss landscape
- Snapshot ensemble (ICLR-17): training SGD with cyclicial learning rate schedule --> train 1, get M for free

Fast Geometric Ensemble (<u>NeurIPS-18</u>): ensembling over low-loss tunnel connecting two minima --> cost of conventional training

27

26

%25

Jour 24

Lest 23

22

21

0.0

0.2

0.4

Polygonal chain: $\phi_{\theta}(t) = \begin{cases} 2(t\theta + (0.5 - t)\hat{w}_1), & 0 \le t \le 0.5 \\ 2((t - 0.5)\hat{w}_2 + (1 - t)\theta), & 0.5 \le t \le 1. \end{cases}$

Bezier curve: $\phi_{\theta}(t) = (1-t)^2 \hat{w}_1 + 2t(1-t)\theta + t^2 \hat{w}_2, \ 0 \le t \le 1.$

Segment

- Polychain

0.8

1.0

Bayesian model averaging: unifying ensemble and Bayes

Bayes vs Ensembles: What's the difference?

Both aggregate predictions over a collection of models. There are two core distinctions.

The space of models.

Bayes posits a prior that weighs different probability to different functions, and over an infinite collection of functions.

Model aggregation.

Bayesian models apply averaging, weighted by the posterior.

Ensembles weigh functions equally a priori and use a finite collection

Ensembles can apply any strategy and have non-probabilistic interpretations.

--> but all for **same goal**: to compute an accurate predictive distribution --> do not need samples from a posterior, or even a faithful approximation to the posterior.

- **Bayesian model averaging (<u>NeurIPS-20</u>):** unifying ensemble and Bayes
 - derived from marginalization procedure: key distinguishing property of Bayesian method.
 - an ensemble containing many high-performing but diverse models:

$$p(y|x, \mathcal{D}) = \int p(y|x, w) p(w|\mathcal{D}) dw$$

- o consider the BMA integral *separately from* the simple Monte Carlo approximation in BNNs
- Deep ensemble is non-Bayesian method, but can be treated as a compelling approach of BMA:

The state-of-the-art and a unified perspective

Bayesian model averaging: unifying ensemble and Bayes

Why BMA is actually compelling for deep learning ?

- motivated by classical theory of statistical models
- evidenced by extensive empirical results
- provide complementary benefits:

Ensemble MC-Dropout, Multi-SWAG, Multi-SWA

(Ensemble + local approximate/SWA can outperform Deep ensemble)

(a) Gaussian Noise

The state-of-the-art and a unified perspective

Bayesian model averaging: unifying ensemble and Bayes

Why BMA is actually compelling for deep learning ?

provide intriguing perspectives on many problems of deep learning

Content

A. Uncertainty in Deep Learning

- 1. Background
- 2. Main approaches
- 3. The state-of-the-art and a unified perspective
- 4. Some potential research

Some potential research

Some comments:

- <u>robustness</u>: improving accuracy & model calibration under **distribution shift** is challenging, but prerequisite in practice
- <u>subspace inference:</u>
 - motivated by loss landscape characteristics
 - suggests integrating **Bayesian-like layers** into deep architectures.
- <u>explore functional behaviors --> understanding posterior predictive distribution</u>
 - functional-space inference in BNNs
 - avoid drawbacks and controversies of weight-space inference
 - connect to kernel learning (via NTK for example)
 - loss landscape geometry, training dynamics, optimization on distributional space
 - combine kernel-based Bayesian principles with deep learning

Some potential research

- * **Beyond principled approaches:** Stop thinking about just probability distributions. Leverage the inductive biases of core DL techniques --> improve significantly model calibration.
 - test-time data augmentation
 - mixup training: $x = lpha x_1 + (1-lpha) x_2, y = lpha y_1 + (1-lpha) y_2$ •
 - more modern and more accurate architectures (<u>arXiv-21</u>): MLP-Mixer, Vision Transformer --> reversed trends •
 - in-distribution: calibration slightly deteriorates with increasing model size Ο
 - under distribution shift: accuracy and calibration are correlated, calibration improves with model size Ο

Content

B. Bayesian neural network and its controversies

- 1. Why Bayesian neural nets
- 2. Expressive or simple approximate posterior distribution
- 3. Tempered or original true posterior distribution
- 4. Informative or vague prior distribution