Optimal Transport for Generative Modeling

Presenter: Son Nguyen
VinAI Resident

21/10/2020
Outline

1. A brief review of Optimal Transport
 • Monge/Kantorovich formulation
 • Wasserstein distance
 • Sliced Wasserstein distance

2. Recap Deep Generative Models
 • Variational Autoencoders (VAE)
 • Generative Adversarial Networks (GAN)

3. Generative Modeling from Optimal Transport view
 • (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
 • (Sliced) Wasserstein Autoencoders (WAE, SWAE)

4. References
Outline

1. A brief review of Optimal Transport
 - Monge/Kantorovich formulation
 - Wasserstein distance
 - Sliced Wasserstein distance

2. Recap Deep Generative Models
 - Variational Autoencoders (VAE)
 - Generative Adversarial Networks (GAN)

3. Generative Modeling from Optimal Transport view
 - (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
 - (Sliced) Wasserstein Autoencoders (WAE, SWAE)

4. References
A brief review of Optimal Transport

- Monge formulation

Definition: We say that $T : X \to Y$ transports $\mu \in \mathcal{P}(X)$ to $\nu \in \mathcal{P}(Y)$ and we call it a transport map if:

$$v(B) = \mu(T^{-1}(B)) \text{ or } v(B) = \mu(A)$$

for all ν-measurable sets B

shorthand: $v = T_\# \mu$
A brief review of Optimal Transport

Monge formulation

Monge’s Optimal Transport Problem:
Given $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$:

$$\min_T \mathbb{M}(T) = \int_X c(x, T(x)) d\mu(x)$$

over measurable maps $T : X \to Y$ subject to $\nu = T_\# \mu$

- Monge only considered the problem with $c(x, y) = |x - y|$. (super hard with L^2 cost)
- The key of hardness in Monge’s problem is the non-linear constraint: $\nu(B) = \mu(T^{-1}(B))$
- In continuous case, the constraint require transport map is bijective and differentiable, it is equivalent to:

$$f(x) = g(T(x))|\det(\nabla T(x))| \quad \text{where } d\mu(x) = f(x)dx, \quad dv(y) = g(y)dy$$
A brief review of Optimal Transport

Monge formulation

Monge Formulation’s cons:

- mass is mapped, it means that mass is not split → hard constraint
- transport map may be not exist.

For example: \(\mu = \delta_{x_1} \), \(\nu = \frac{1}{2} \delta_{y_1} + \frac{1}{2} \delta_{y_2} \) then \(\nu(y_1) = \frac{1}{2} \) but \(\mu(T^{-1}(y_1)) \in \{0, 1\} \) depending on weather \(x_1 \in T^{-1}(y_1) \). Hence no transport maps exist

There are two importance cases where transport maps exist:

1. The discrete case when \(\mu = \frac{1}{n} \sum_{i=1}^{N} \delta_{x_i} \) and \(\nu = \frac{1}{n} \sum_{j=1}^{N} \delta_{y_j} \)
2. The absolutely continuous case when \(d\mu(x) = f(x)dx \) and \(d\nu(y) = g(y)dy \)
A brief review of Optimal Transport

Kantorovich Formulation

Consider a measure \(\pi \in \mathcal{P}(X, Y) \) and think of \(d\pi(x, y) \) as the amount of mass transferred from \(x \) to \(y \). This allows mass can be moved to multiple locations.

We have the constraints:

\[\pi(A \times Y) = \mu(A) \text{ and } \pi(X \times B) = v(B) \text{ for all measurable sets } A \subseteq X, B \subseteq Y \]

• \(\pi \) is a joint distribution which has first marginal \(\mu \in \mathcal{P}(X) \) and second marginal \(v \in \mathcal{P}(Y) \)

• \(\pi \) is called transport plan and set of such transport plan \(\Pi(\mu, v) \)
A brief review of Optimal Transport

- Kantorovich Formulation

\[
\gamma = \begin{bmatrix}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{3}
\end{bmatrix} x_1
\]

\[
\gamma = \begin{bmatrix}
\frac{1}{9} & 0 & \frac{2}{9} \\
\frac{2}{9} & 1 & \frac{2}{9}
\end{bmatrix} x_2
\]

\[
\gamma = \begin{bmatrix}
\frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\
\frac{2}{9} & \frac{2}{9} & \frac{2}{9}
\end{bmatrix} x_2
\]

\[
\sum_i \gamma_{i} = \begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{bmatrix}
\]

\[
\sum_j \gamma_{j} = \begin{bmatrix}
\frac{1}{3} \\
\frac{2}{3}
\end{bmatrix}
\]
A brief review of Optimal Transport

Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Given $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$

$$\min_{\pi} K(\pi) = \int_{X \times Y} c(x, y) d\pi(x, y)$$

Assume that there exists an optimal transport map $T^* : X \to Y$ subject to Monge formulation. Then we define $d\pi(x, y) = d\mu(x) \delta_{y=T^*(x)}$. It is easy to show that $\pi \in \Pi(x, y)$

$$\pi(A \times Y) = \int_A \delta_{T^*(x) \in Y} d\mu(x) = \mu(A)$$

$$\pi(X \times B) = \int_X \delta_{T^*(x) \in B} d\mu(x) = \mu(\{(T^*)^{-1}(B)\}) = \nu(B)$$

$$\int_{X \times Y} c(x, y) d\pi(x, y) = \int_X \int_Y c(x, y) \delta_{y=T^*(x)} dy d\mu(x) = \int_X c(x, T^*(x)) d\mu(x)$$
A brief review of Optimal Transport

Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Kantorovich problem between two discrete measures \(\mu = \sum_{i=1}^{m} \alpha_i \delta_{x_i} \), \(\nu = \sum_{j=1}^{n} \beta_j \delta_{y_j} \) where \(\sum_{i=1}^{m} \alpha_i = 1 = \sum_{j=1}^{n} \beta_j, \alpha_i \geq 0, \beta_j \geq 0 \) then Kantorovich problem become a linear programme with linear constraint.

\[
\min_{\pi} \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} \pi_{ij}
\]
A brief review of Optimal Transport

- Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Primal problem: \[KP(\mu, v) = \min_{\pi} \int_{X \times Y} c(x, y) d\pi(x, y) \]

\[\pi(A \times Y) = \mu(A) \quad \pi(X \times B) = v(B) \]

Dual problem: \[DP(\mu, v) = \sup_{(\varphi, \psi) \in \Phi_c} \int_X \varphi d\mu + \int_Y \psi dv \]

\[\Phi_c = \{ (\varphi, \psi) \in L^1(\mu) \times L^1(v) : \varphi(x) + \psi(y) \leq c(x, y) \} \]

\[\int_X |f| d\mu < \infty \]

\[DP(\mu, v) \leq KP(\mu, v) \]
A brief review of Optimal Transport

- **Wasserstein Distance**

 Definition: Let μ, ν are two probability measures in the set of probability measure with finite p'th moment defined on a given metric space (Ω, d), i.e. exist some x_0:

 $$\int_{\Omega} d(x, x_0)^p d\mu(x) < +\infty$$

 For $p \geq 1$, $c(x, y) = d^p(x, y) = |x - y|^p$ then:

 $$W_p(\mu, \nu) = \left(\min_{\pi \in \Pi(\mu, \nu)} \int_{\Omega \times \Omega} d^p(x, y) d\pi(x, y) \right)^{\frac{1}{p}}$$

 When $p = 1$ Wasserstein Distance becomes Earth Mover Distance
A brief review of Optimal Transport

Wasserstein Distance

Kantorovich dual form of 1-Wasserstein:

\[
W_1(\mu, \nu) = \sup_{f,g} \int f \, d\mu(x) + \int g \, d\nu(y) \quad \text{subject to } f(x) + g(y) \leq ||x-y||
\]

\[
= \sup_{f} \int f \, d\mu(x) - \int f \, d\nu(y) \quad \text{where } f : \mathbb{R}^d \rightarrow \mathbb{R}, \text{ Lip}(f) \leq 1
\]
A brief review of Optimal Transport

- Wasserstein Distance

Special case: Wasserstein distance has **closed-form** solution in **one dimension**.

- **Discrete case:** \(\mu = \frac{1}{n} \sum_{i=1}^{N} \delta_{x_i} \) and \(\nu = \frac{1}{n} \sum_{j=1}^{N} \delta_{y_j} \). Sort \(x_1 \leq \ldots \leq x_n \) and \(y_1 \leq \ldots \leq y_n \)

\[
W_p^p(\mu, \nu) = \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|^p
\]

- **Continuous case:**
 - the cumulative distribution function: \(F_\mu(x) = \mu((\infty, x]) = \int_{-\infty}^{x} I_\mu(\tau)d\tau \)
 - the pseudo-inverse: \(F_\mu^{-1}(t) = \inf \{ x \in \mathbb{R} : F_\mu(x) \geq t \} \)
 - the unique optimal transport map: \(f(x) = F_\nu^{-1}(F_\mu(x)) \)

\[
W_p(\mu, \nu) = \left(\int_X d^p(x, F_\nu^{-1}(F_\mu(x)))d\mu(x) \right)^{\frac{1}{p}} = \left(\int_0^1 d^p(F_\mu^{-1}(z), F_\nu^{-1}(z))dz \right)^{\frac{1}{p}}
\]
A brief review of Optimal Transport

- Sliced Wasserstein distance

Radon transform:

- project **higher-dimensional** probability densities into sets of **one-dimensional** marginal distributions and compare these marginal distributions via the Wasserstein distance.
 - take advantage of the **closed-form solution** of Wasserstein distance on 1-D.

- These **one dimensional** marginal distributions obtained through **Radon Transform**:

\[
\mathcal{R} p_X(t; \theta) = \int_X p_X(x) \delta(t - \theta \cdot x) dx, \quad \forall \theta \in \mathbb{S}^{d-1}, \forall t \in \mathbb{R}
\]

- \(p_X(x) \) is a \(d \) -dimensional probability density,
- \(\mathbb{S}^{d-1} \) is the \(d \)-dimensional unit sphere
- \(\mathcal{R} p_X(; \theta) \) is a one-dimensional slice of \(p_X(x) \)
A brief review of Optimal Transport

Sliced Wasserstein distance

Radon transform:

$$\mathcal{R}p_X(t; \theta) = \int_X p_X(x) \delta(t - \theta \cdot x) dx, \ \forall \theta \in S^{d-1}, \ \forall t \in \mathbb{R}$$

Radon Transform of a empirical distribution $p_X(x) = \frac{1}{M} \sum_{m=1}^{M} \delta(x - x_m)$ respect to $\theta \in S^{d-1}$:

$$R_{p_X}(t, \theta) = \frac{1}{M} \sum_{m=1}^{M} \int_X \delta(x - x_m) \delta(t - \langle \theta, x \rangle) dx$$

$$= \frac{1}{M} \sum_{m=1}^{M} \delta(t - \langle \theta, x_m \rangle)$$
A brief review of Optimal Transport

❑ Sliced Wasserstein distance

Formulation:

Given two probability measures μ, ν with the probability density I_μ, I_ν respectively:

$$SW_p(\mu, \nu) = \left(\int_{S^{d-1}} W_p^p (RI_\mu(\cdot, \theta), RI_\nu(\cdot, \theta)) d\theta \right)^{1/p}$$

$$\approx \left(\frac{1}{L} \sum_{l=1}^{L} W_p^p (RI_\mu(\cdot, \theta_l), RI_\nu(\cdot, \theta_l)) \right)^{1/p}$$

(use Monte Carlo scheme to approximate SW_p distance by drawn samples θ_l uniformly on S^{d-1})

- $SW_p^p(\mu, \nu) \leq \alpha_{d,p} W_p^p(\mu, \nu)$, with $\alpha_{d,p} = \frac{1}{d} \int_{S^{d-1}} ||\theta||_p d\theta \leq 1$

- The sensitivity and discriminativeness of Sliced Wasserstein distance depend on the number and the importance of projections L.

17
A brief review of Optimal Transport

❑ Sliced Wasserstein distance

Slice-based improved distances:

- **Max-Sliced Wasserstein distance**: to find a single linear projection that maximizes the distance of the probability measures in the projected space.

\[
\max - SW_p(I_\mu, I_v) = \max_{\theta \in S^{d-1}} W_p(\mathcal{R}I_\mu(., \theta), \mathcal{R}I_v(., \theta))
\]

E.g: \(I_\mu = \mathcal{N}(0, I), I_v = \mathcal{N}(x_0, I)\) then \(\mathcal{R}I_\mu(., \theta) = \mathcal{N}(0, 1), \mathcal{R}I_v(., \theta) = \mathcal{N}(\langle x_0, \theta \rangle, I)\).

In high dimension space, sampled uniform \(\theta\) would be nearly orthogonal to a fixed vector \(x_0\) → the sliced distance will be 0 → the best direction is \(\theta = x_0\)
A brief review of Optimal Transport

- Sliced Wasserstein distance

Slice-based improved distances:

- **Generalized Sliced-Wasserstein distance**: using Generalized Radon Transform which projects original distribution on **hypersurface**:

\[
\mathcal{G}I(t, \theta) = \int_{\mathbb{R}^d} I(x) \delta(t - g(x, \theta)) \, dx
\]

\[
GSW_p(I_\mu, I_v) = \left(\int_{\Omega_\theta} W_p^p(\mathcal{G}I_\mu(\cdot, \theta), \mathcal{G}I_v(\cdot, \theta)) \, d\theta \right)^{\frac{1}{p}}
\]

- **Generalized max Sliced-Wasserstein distance**:

\[
\max - GSW_p(I_\mu, I_v) = \max_{\theta \in \Omega_\theta} W_p(\mathcal{G}I_\mu(\cdot, \theta), \mathcal{G}I_v(\cdot, \theta))
\]
Outline

1. A brief review of Optimal Transport
 • Monge/Kantorovich formulation
 • Wasserstein distance
 • Sliced Wasserstein distance

2. Recap Deep Generative Models
 • Variational Autoencoders (VAE)
 • Generative Adversarial Networks (GAN)

3. Generative Modeling from Optimal Transport view
 • (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
 • (Sliced) Wasserstein Autoencoders (WAE, SWAE)

4. References
Recap Deep Generative Models

Variational Autoencoders (VAE)

- A directed probabilistic model with **latent variable** \(z \), global parameter \(\theta \):
 \[
p_{\theta}(x, z) = p_{\theta}(z)p_{\theta}(x|z)
\]

- **Goal**: maximize the marginal log-likelihood of the dataset:
 \[
 \log p_{\theta}(X) = \sum_{i=1}^{n} \log p_{\theta}(x_i)
 \]

- **Challenge**: marginal log-likelihood of any data point is **intractable** in general

- **Key idea**: Use variational (E-M) method \(\rightarrow \) maximize a **variational lower bound** instead:
 \[
 \log p_{\theta}(x) = \mathcal{L}(\theta, \phi; x) + \mathcal{KL}(q_{\phi}(z|x)\|p_{\theta}(z|x))
 \geq \mathcal{L}(\theta, \phi; x) = \mathbb{E}_{q_{\phi}(z|x)} \log p_{\theta}(x|z) - \mathcal{KL}(q_{\phi}(z|x)\|p_{\theta}(z))
 \]
Recap Deep Generative Models

- Variational Autoencoders (VAE)

\[\mathcal{L}(\theta, \phi; x) = \mathbb{E}_{q_{\phi}(z|x)} \log p_{\theta}(x|z) - \mathbb{KL}(q_{\phi}(z|x) || p_{\theta}(z)) \]

- **Algorithm**: maximize the variational lower bound
 - use **amortized inference**: variational parameter \(\phi \) is output of a mapping parametrized by a neural net with input \(x \). (this neural net is **global**)
 - optimize \(\phi, \theta \) with stochastic gradient method
 - use Monte Carlo sampling + **reparametrization trick** to estimate gradient.
Recap Deep Generative Models

Variational Autoencoders (VAE)

The Autoencoder perspective:

\[
\log p_\theta(x) \geq \left(E_{z \sim q_\phi(z)} \log p_\theta(x|z) \right) - KL(q_\phi(z|x) || p(z))
\]

- **Reconstruction loss**
- **Regularization**

\[L(\theta, \phi) - \text{VAE objective} \]

- \(q_\phi(z|x) \): probabilistic **encoder** or **inference** network
- \(p_\theta(x|z) \): probabilistic **decoder** or **generative** network (\(\theta \) is a neural net)
Recap Deep Generative Models

- **Variational Autoencoders (VAE)**
 - **The Autoencoder perspective:** \(\log p_\theta(x) \geq \left(E_{z \sim q_x(z)} \log p_\theta(x|z) \right) - KL(q_\phi(z|x)||p(z)) \)
 - Reconstruction loss
 - Regularization
 - \(L(\theta, \phi) \) - VAE objective

 - Variational objective of VAE has **two goals with a trade-off**: reconstruct and generate or equivalently inference and learning
 \[
 \hat{z} \sim q_\phi(z|x), \hat{x} \sim p_\theta(x|\hat{z}) \rightarrow \text{reconstruction}
 \]
 \[
 \hat{x} \sim p_\theta(x) \leftrightarrow \hat{z} \sim p_\theta(z), \hat{x} \sim p_\theta(x|\hat{z}) \rightarrow \text{generate sample}
 \]

 - Need a **principle** (unlike maximum likelihood), or other **objective formulations** for AE to balance the above 2 goals.
Recap Deep Generative Models

Generative Adversarial Networks (GAN)

Formulation:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_z</td>
<td>Data distribution over noise input z</td>
<td>Usually, just uniform.</td>
</tr>
<tr>
<td>p_g</td>
<td>The generator’s distribution over data x</td>
<td></td>
</tr>
<tr>
<td>p_r</td>
<td>Data distribution over real sample x</td>
<td></td>
</tr>
</tbody>
</table>

GANs is formulated as a minimax game b/w Generator G and Discriminator D:

$$\min_G \max_D L(D, G) = \mathbb{E}_{x \sim p_r(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

$$= \mathbb{E}_{x \sim p_r(x)}[\log D(x)] + \mathbb{E}_{x \sim p_g(x)}[\log(1 - D(x))]$$
Recap Deep Generative Models

Generative Adversarial Networks (GAN)

Optimality in GANs:

Proposition 1. For G fixed, the optimal discriminator \(D^*_G(x) \) is
\[
D^*_G(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)}
\]

Theorem 1. The global minimum of the virtual training criterion \(C(G) \) is achieved if and only if \(p_g = p_{\text{data}} \). At that point, \(C(G) \) achieves the value \(-\log 4\).

\[
C(G) = \max_D V(G, D)
\]

\[
C(G) = -\log(4) + KL \left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right\| \right) + KL \left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right\| \right)
\]

Training GANs is equivalent to minimizing the Jensen-Shannon divergence b/w the data and generative distributions.

Proposition 2. If \(G \) and \(D \) have enough capacity, and at each step of Algorithm 1, the discriminator is allowed to reach its optimum given \(G \), and \(p_g \) is updated so as to improve the criterion
\[
E_{x \sim p_{\text{data}}} [\log D^*_G(x)] + E_{x \sim p_g} [\log(1 - D^*_G(x))]
\]
then \(p_g \) converges to \(p_{\text{data}} \).
Recap Deep Generative Models

- Generative Adversarial Networks (GAN)

Problem with training GANs:

- **non convergence**: unstable training, vanishing gradient
- **mode collapsing**

Why **non convergence**? The issue from f — divergence family (KL, Jensen-Shannon...)

When $\theta \neq 0$:

$$D_{KL}(P||Q) = \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = +\infty$$

$$D_{KL}(Q||P) = \sum_{x=\theta, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = +\infty$$

$$D_{JS}(P, Q) = \frac{1}{2} \left(\sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{2} + \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{2} \right) = \log 2$$
Recap Deep Generative Models

Generative Adversarial Networks (GAN)

Solutions from Optimal Transport:

- All member of f —divergence has cons: can not be computed when two distributions are disjoint support or continuous-discrete, not a distance, not very meaningful

\rightarrow Optimal transport distances overcome these problems!
Outline

1. A brief review of Optimal Transport
 • Monge/Kantorovich formulation
 • Wasserstein distance
 • Sliced Wasserstein distance

2. Recap Deep Generative Models
 • Variational Autoencoders (VAE)
 • Generative Adversarial Networks (GAN)

3. Generative Modeling from Optimal Transport view
 • (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
 • (Sliced) Wasserstein Autoencoders (WAE, SWAE)

4. References
Generative Modeling from Optimal Transport view

Wasserstein GAN (WGAN)

- Let $P_r, P_\theta (P_g)$ be the data and model (generative) distribution respectively. WGAN minimizes the W_1 distance between P_r, P_θ via Kantorovich duality:

$$W(P_r, P_\theta) = \sup_{\|f\|_L \leq 1} \mathbb{E}_{x \sim P_r}[f(x)] - \mathbb{E}_{x \sim P_\theta}[f(x)]$$

or K -Lipschitz equivalently:

$$W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_L \leq K} \mathbb{E}_{x \sim P_r}[f(x)] - \mathbb{E}_{x \sim P_g}[f(x)]$$

- Relax Lipschitz constraint by parametrizing f with a neural net D and use:
 - Weight clipping: $w \leftarrow \text{clip}(w, -c, c)$
 - Gradient penalty: $\lambda \mathbb{E}_{\tilde{x} \sim P_{\tilde{x}}}[(\|\nabla_{\tilde{x}} D(\tilde{x})\|_2 - 1)^2]$, where \tilde{x} sampled from \tilde{x} (fake) and x (real) with ϵ uniformly sampled in $[0,1]$: $\hat{x} \leftarrow \epsilon x + (1 - \epsilon)\tilde{x}$
Generative Modeling from Optimal Transport view

- Wasserstein GAN (WGAN)
Generative Modeling from Optimal Transport view

- **Wasserstein GAN (WGAN)**

 - **Weight clipping:** simple, effective in some cases, but slow convergence, unstable gradient (vanishing or exploding), similar to difference constraint: L2 clipping, weight norm, L2-L1 ...

```latex
Algorithm 1 WGAN with gradient penalty. We use default values of \( \lambda = 10, n_{\text{critic}} = 5, \alpha = 0.0001, \beta_1 = 0, \beta_2 = 0.9 \).

\textbf{Require:} The gradient penalty coefficient \( \lambda \), the number of critic iterations per generator iteration \( n_{\text{critic}} \), the batch size \( m \), Adam hyperparameters \( \alpha, \beta_1, \beta_2 \).

\textbf{Require:} initial critic parameters \( w_0 \), initial generator parameters \( \theta_0 \).

1: while \( \theta \) has not converged do
2: \hspace{1em} for \( t = 1, \ldots, n_{\text{critic}} \) do
3: \hspace{2em} for \( i = 1, \ldots, m \) do
4: \hspace{3em} Sample real data \( x_i \sim \mathbb{P}_r \), latent variable \( z_i \sim p(z) \), a random number \( \epsilon \sim U[0, 1] \).
5: \hspace{3em} \mu_i \leftarrow G_\theta(z_i)
6: \hspace{3em} \hat{x}_i \leftarrow \epsilon x_i + (1 - \epsilon) \mu_i
7: \hspace{3em} L^{(i)} \leftarrow D_w(x_i) - D_w(\hat{x}_i) + \lambda(\|\nabla_\mu D_w(\hat{x}_i)\|_2 - 1)^2
8: \hspace{3em} end for
9: \hspace{1em} w \leftarrow \text{Adam}(\nabla_w \frac{1}{m} \sum_{i=1}^{m} L^{(i)}, w, \alpha, \beta_1, \beta_2)
10: end for
11: Sample a batch of latent variables \( \{z^{(i)}\}_{i=1}^{m} \sim p(z) \).
12: \theta \leftarrow \text{Adam}(\nabla_\theta \frac{1}{m} \sum_{i=1}^{m} -D_w(G_\theta(z_i)), \theta, \alpha, \beta_1, \beta_2)
13: end while
```
Generative Modeling from Optimal Transport view

- Sliced Wasserstein GAN (SWGAN)
 - The correctness of the estimate in WGAN depends fundamentally on how well the discriminator has been trained → it seems to be difficult like the adversarial training in vanilla GAN.
 - SWGAN:
 - only needs the generator, not need the critic / discriminator.
 - takes advantage of the closed-form solution of Wasserstein distance on 1-D.
 - but:
 - requires large number of projections due to high dimensional space, $\approx \mathcal{O}(10^4)$

Algorithm 1: Training the Sliced Wasserstein Generator

```
while $\theta$ not converged do
    Sample data $\{D_i\}_{i=1}^n \sim \mathbb{P}_x$, noise $\{z_i\}_{i=1}^n \sim \mathbb{P}_z$;
    $\{F_i\}_{i=1}^n \leftarrow \{G_{\theta}(z_i)\}_{i=1}^n$;
    compute sliced Wasserstein Distance $(D, F)$
    Init loss $L \leftarrow 0$;
    Sample random projection directions $\Omega = \{\omega_{1:m}\}$;
    for each $\omega \in \Omega$ do
        $D_\omega \leftarrow \{\omega^T D_i\}_{i=1}^n$, $F_\omega \leftarrow \{\omega^T F_i\}_{i=1}^n$;
        $D_\sigma$ and $F_\sigma$ be sorted $D_\omega$ and $F_\omega$;
        $L \leftarrow L + \frac{1}{m} \|D_\sigma - F_\sigma\|^2$;
    end
    return $\frac{L}{m}$;
    $\theta \leftarrow \theta - \alpha \nabla_\theta L$;
end
```
Generative Modeling from Optimal Transport view

☐ Sliced Wasserstein GAN (SWGAN)

- **SWGAN**: solutions for scaling to high dimensional
 - a neural net based discriminator tries to map the real and fake samples into a space where it is easy to tell them apart
 - the two objectives, which are optimized independently (not adversarial training) of each other are:

\[
\min_{\theta} \frac{1}{|\Omega|} \sum_{\omega \in \Omega} W_2^2(f_{\theta'}(D)^{\omega}, f_{\theta'}(F)^{\omega}(\theta)),
\]

\[
\min_{\theta'} \mathbb{E}[- \log(f'_{\theta'}(D))] + \mathbb{E}[- \log(1 - f'_{\theta'}(F))]
\]

where \(\theta\) is the generator weight, \(f'_{\theta'}\) is the neural net (CNN) mapping data into subspace, \(f_{\theta'}\) is the intermediate layer.

- Or using **max-Sliced Wasserstein** for GAN.
Generative Modeling from Optimal Transport view

- Sliced Wasserstein GAN (SWGAN)

Figure 5. MNIST samples after 40k training iterations for different generator configurations. Batch size = 250, Learning rate = 0.0005, Adam optimizer
Generative Modeling from Optimal Transport view

Wasserstein Autoencoder

- Focus on latent variable models $P_G: p_G(x) := \int_{\mathcal{Z}} p_G(x|z)p_z(z)dz, \quad \forall x \in \mathcal{X}$
 - use non-random decoders for simplicity (similar results for random decoders)
 - the optimal transport cost to estimate the distance between P_X and P_G is considered in the primal form:

$$\inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_G)} \mathbb{E}_{(X,Y) \sim \Gamma} [c(X,Y)]$$

- Reparametrization of the couplings:

Theorem 1. For P_G as defined above with deterministic $P_G(X|Z)$ and any function $G: \mathcal{Z} \rightarrow \mathcal{X}$

$$\inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_G)} \mathbb{E}_{(X,Y) \sim \Gamma} [c(X,Y)] = \inf_{Q: Q_Z = P_Z} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)} [c(X,G(Z))],$$

where Q_Z is the marginal distribution of Z when $X \sim P_X$ and $Z \sim Q(Z|X)$.
Generative Modeling from Optimal Transport view

Wasserstein Autoencoder

Reparametrization of the couplings:

Theorem 1. For P_G as defined above with deterministic $P_G(X|Z)$ and any function $G: Z \rightarrow \mathcal{X}$

\[
\inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_G)} \mathbb{E}_{(X,Y) \sim \Gamma} \left[c(X,Y) \right] = \inf_{Q: Q_Z = P_Z} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)} \left[c(X, G(Z)) \right],
\]

where Q_Z is the marginal distribution of Z when $X \sim P_X$ and $Z \sim Q(Z|X)$.

- **Proof:** condition $Q_Z = P_Z$ associated to the constraints on the marginals of transport plan Γ.
- Relax the constraints on Q_Z by adding a **penalty** to the objective:

\[
D_{WAE}(P_X, P_G) := \inf_{Q(Z|X) \in Q} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)} [c(X, G(Z))] + \lambda \cdot D_Z(Q_Z, P_Z)
\]

where Q is any nonparametric set of probabilistic encoders, D_Z is an arbitrary divergence between Q_Z and P_Z.
- use **deep neural networks** to parametrize both encoders Q and decoders G.
Generative Modeling from Optimal Transport view

Wasserstein Autoencoder

- **Formulation**: use D_Z is GAN or MMD regularizers:

 - **WAE-GAN**:

 $$D_{WAE-GAN}(P_X, P_G) = \inf_{Q(Z|X) \in Q} E_{P_X} E_{Q(Z|X)} [c(X, G(Z))] + \lambda D_{GAN}(Q_Z, P_Z)$$

 - P_Z, Q_Z are the true and fake distribution respectively.
 - low dimension, P_Z is simple, nice shape, easy to matching

 - **WAE-MMD**:

 $$D_{WAE-GAN}(P_X, P_G) = \inf_{Q(Z|X) \in Q} E_{P_X} E_{Q(Z|X)} [c(X, G(Z))] + \lambda D_{MMD}(Q_Z, P_Z)$$

 - performs well when matching high-dimensional standard normal distributions
 - not need to tune as training GAN
Generative Modeling from Optimal Transport view

- **Wasserstein Autoencoder**
 - **Formulation:** use D_Z is GAN or MMD regularizers:

```latex
\begin{algorithm}
  \textbf{Algorithm 1} \textit{Wasserstein Auto-Encoder with GAN-based penalty (WAE-GAN).}
  \begin{algorithmic}
    \Require Regularization coefficient $\lambda > 0$.
    \State Initialize the parameters of the encoder $Q_{\phi}$, decoder $G_{\theta}$, and latent discriminator $D_\gamma$.
    \While {$\phi, \theta$ not converged}
      \State Sample $\{x_1, \ldots, x_n\}$ from the training set
      \State Sample $\{z_1, \ldots, z_n\}$ from the prior $P_Z$
      \State Sample $\tilde{z}_i$ from $Q_{\phi}(Z|x_i)$ for $i = 1, \ldots, n$
      \State Update $D_\gamma$ by ascending:
      \State \quad $\frac{\lambda}{n} \sum_{i=1}^{n} \log D_\gamma(z_i) + \log(1 - D_\gamma(\tilde{z}_i))$
      \State Update $Q_{\phi}$ and $G_{\theta}$ by descending:
      \State \quad $\frac{1}{n} \sum_{i=1}^{n} c(x_i, G_{\theta}(\tilde{z}_i)) - \lambda \cdot \log D_\gamma(\tilde{z}_i)$
    \EndWhile
  \end{algorithmic}
\end{algorithm}

\begin{algorithm}
  \textbf{Algorithm 2} \textit{Wasserstein Auto-Encoder with MMD-based penalty (WAE-MMD).}
  \begin{algorithmic}
    \Require Regularization coefficient $\lambda > 0$, characteristic positive-definite kernel $k$.
    \State Initialize the parameters of the encoder $Q_{\phi}$, decoder $G_{\theta}$, and latent discriminator $D_\gamma$.
    \While {$\phi, \theta$ not converged}
      \State Sample $\{x_1, \ldots, x_n\}$ from the training set
      \State Sample $\{z_1, \ldots, z_n\}$ from the prior $P_Z$
      \State Sample $\tilde{z}_i$ from $Q_{\phi}(Z|x_i)$ for $i = 1, \ldots, n$
      \State Update $Q_{\phi}$ and $G_{\theta}$ by descending:
      \State \quad $\frac{1}{n} \sum_{i=1}^{n} c(x_i, G_{\theta}(\tilde{z}_i)) + \frac{\lambda}{n(n-1)} \sum_{i \neq j} k(z_i, z_j)$
      \State \quad $+ \frac{\lambda}{n(n-1)} \sum_{i \neq j} k(\tilde{z}_i, \tilde{z}_j) - \frac{2\lambda}{n^2} \sum_{i,j} k(\tilde{z}_i, \tilde{z}_j)$
    \EndWhile
  \end{algorithmic}
\end{algorithm}
```
Generative Modeling from Optimal Transport view

- **Wasserstein Autoencoder**

 - **Properties:**
 - An explanation for why VAEs tend to generate **blurry** images

![Diagram](image)

Figure 1: Both VAE and WAE minimize two terms: the reconstruction cost and the regularizer penalizing discrepancy between P_Z and distribution induced by the encoder Q. VAE forces $Q(Z|X = x)$ to match P_Z for all the different input examples x drawn from P_X. This is illustrated on picture (a), where every single red ball is forced to match P_Z depicted as the white shape. Red balls start intersecting, which leads to problems with reconstruction. In contrast, WAE forces the continuous mixture $Q_Z := \int Q(Z|X)dP_X$ to match P_Z, as depicted with the green ball in picture (b). As a result, latent codes of different examples get a chance to stay far away from each other, promoting a better reconstruction.
Generative Modeling from Optimal Transport view

- Wasserstein Autoencoder

 - Properties:
 - An explanation for why VAEs tend to generate blurry images

Figure 3: VAE (left column), WAE-MMD (middle column), and WAE-GAN (right column) trained on CelebA dataset. In “test reconstructions” odd rows correspond to the real test points.
Generative Modeling from Optimal Transport view

- Wasserstein Autoencoder

 - **Properties:**
 - reconstruction term of WAE not come from Gaussian (majority) which needs to tune the variance.
 - when \(c(x, y) = \|x - y\|^2 \), WAE-GAN is equivalent to adversarial auto-encoders (AAE), but generalizes AAE in two ways: any cost \(c(x, y) \) and discrepancy measure \(D_Z \).
 - allows both probabilistic and deterministic encoder-decoder pairs of any kind.
Generative Modeling from Optimal Transport view

- **Sliced Wasserstein Autoencoder**
 - avoids the need to perform **adversarial training** in the encoding space and is not restricted to closed-form distributions.
 - takes advantage of the **closed-form solution** of Wasserstein distance on 1-D.
 - fast, simple, effective with small number of projections (z is low dimension), $\approx O(10)$

$$D_{SWAE}(P_X, P_G) = \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_Q[c(X, G(Z))] + \lambda SW(Q_Z, P_Z)$$

- can use **max/generalized version** of sliced distance as the regularization instead of SW.

![Image showing SW approximations](image.png)

Figure 2: SW approximations (scaled by $1.22\sqrt{d}$) of the W_2 distance in different dimensions, $d \in \{2^n\}_{n=1}^{10}$, and different number of random slices, L.

43
Generative Modeling from Optimal Transport view

- Sliced Wasserstein Autoencoder

<table>
<thead>
<tr>
<th>Generations</th>
<th>1</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>...</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAE-GAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAE-MMD (BBF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Samples from the given distribution, $x_i \sim q_2$
- Encoded data samples $z_j = \phi(x_j), x_j \sim p_x$
- Visualization of the encoding space, via ϕ
Generative Modeling from Optimal Transport view

Further reading

- Recent advances of Optimal Transport facilitate applications in generative modeling: (sliced) Gromov-Wasserstein, Sinkhorn, Randkhorn ...
References