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A brief review of Optimal Transport

❑ Monge formulation

Definition: We say that                    transports                   to                 and we call it a 
transport map if:  

or                           for all v-measurable sets B            

shorthand:         
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A brief review of Optimal Transport

❑ Monge formulation

Monge’s Optimal Transport Problem:

Given                  and :     

over measurable maps                     subject to 

▪ Monge only considered the problem with                                  . (super hard with      cost)

▪ The key of hardness in Monge’s problem is the non-linear constraint:                                                

▪ In continuous case, the constraint require transport map is bijective and differentiable, it is 
equivalent to: 

,where 
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A brief review of Optimal Transport

❑ Monge formulation

Monge Formulation’s cons: 

▪ mass is mapped, it means that mass is not split → hard constraint

▪ transport map may be not exist.

For example:                                              then                      but                                      
depending on weather                         . Hence no transport maps exist

There are two importance cases where transport maps exist:

1. The discrete case when                                   and                                  

2. The absolutely continuous case when                                 and                                 
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A brief review of Optimal Transport

❑ Kantorovich Formulation

▪ Consider a measure                        and think of                  as the amount of mass 
transferred from     to    . This allows mass can be moved to multiple locations

▪ We have the constraints:

and for all measurable sets

• is a joint distribution which has first marginal                     and second marginal 

• is called transport plan and set of such transport plan
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A brief review of Optimal Transport

❑ Kantorovich Formulation
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A brief review of Optimal Transport

❑ Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Given and  

Assume that there exists a optimal transport map                          subject to Monge 
formulation. Then we define                                             . It is easy to show that 
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A brief review of Optimal Transport

❑ Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Kantorovich problem between two discrete measures
where                                                               then Kantorovich problem become a linear 
programme with linear constraint.
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A brief review of Optimal Transport

❑ Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Primal problem:

Dual problem:
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A brief review of Optimal Transport

❑ Wasserstein Distance

Definition: Let          are two probability measures in the set of probability measure with 
finite 𝑝′𝑡ℎ moment defined on a given metric space          , i.e. exist some     :                                                      

For                                             then:

When             Wasserstein Distance becomes Earth Mover Distance
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A brief review of Optimal Transport

❑ Wasserstein Distance

Kantorovich dual form of 1-Wasserstein:

=
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A brief review of Optimal Transport

❑ Wasserstein Distance

Special case: Wasserstein distance has closed-form solution in one dimension.

▪ Discrete case: and . Sort

▪ Continuous case:  

• the cumulative distribution function: 

• the pseudo-inverse: 

• the unique optimal transport map:
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A brief review of Optimal Transport

❑ Sliced Wasserstein distance

Randon transform:

▪ project higher-dimensional probability densities into sets of one-dimensional marginal 
distributions and compare these marginal distributions via the Wasserstein distance.

→ take advantage of the closed-form solution of Wasserstein distance on 1-D.

▪ These one dimensional marginal distributions obtained through Radon Transform:

is a 𝑑 −dimensional probability density,            

is the d-dimensional unit sphere

is a one-dimensional slice of 
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A brief review of Optimal Transport

❑ Sliced Wasserstein distance

Randon transform:

Radon Transform of a empirical distribution                             

respect to :
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A brief review of Optimal Transport

❑ Sliced Wasserstein distance

Formulation:

Given two probability measures         with the probability density              respectively:

(use Monte Carlo scheme to approximate 𝑆𝑊𝑝 distance by drawn samples      uniformly on            )

▪ , with 

▪ The sensitivity and discriminativeness of Sliced Wasserstein distance depend on the number and 

the importance of projections 𝐿.
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A brief review of Optimal Transport

❑ Sliced Wasserstein distance

Slice-based improved distances:

▪ Max-Sliced Wasserstein distance: to find a single linear projection that maximizes the distance 

of the probability measures in the projected space.

E.g: then                                          . 

In high dimension space, sampled uniform    would be nearly orthogonal to a fixed vector        

→ the sliced distance will be 0 → the best direction is 𝜃 = 𝑥0
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A brief review of Optimal Transport

❑ Sliced Wasserstein distance

Slice-based improved distances:

▪ Generalized Sliced-Wasserstein distance: using Generalized Radon Transform which projects 

original distribution on hypersurface:

▪ Generalized max Sliced-Wasserstein distance:
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Recap Deep Generative Models

❑ Variational Autoencoders (VAE)

▪ A directed probabilistic model with latent variable 𝑧, global parameter 𝜃:

▪ Goal: maximize the marginal log-likelihood of the dataset: 

▪ Challenge: marginal log-likelihood of any data point is intractable in general

▪ Key idea: Use variational (E-M) method →maximize a variational lower bound instead:
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Recap Deep Generative Models

❑ Variational Autoencoders (VAE)

▪ Algorithm: maximize the variational lower bound

• use amortized inference:  variational parameter 𝜙 is output of a mapping parametrized by a      

neural net with input 𝑥.  (this neural net is global)

• optimize 𝜙, 𝜃 with stochastic gradient method 

• use Monte Carlo sampling + reparametrization trick to estimate gradient.
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Recap Deep Generative Models

❑ Variational Autoencoders (VAE)

▪ The Autoencoder perspective:

• : probabilistic encoder or inference network

• : probabilistic decoder or generative network (𝜃 is a neural net)
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Recap Deep Generative Models

❑ Variational Autoencoders (VAE)

▪ The Autoencoder perspective:

• Variational objective of VAE has two goals with a trade-off:

reconstruct and generate or equivalently inference and learning

→ reconstruction

→ generate sample

• Need a principle (unlike maximum likelihood), or other objective 

formulations for AE to balance the above 2 goals.
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Recap Deep Generative Models

❑ Generative Adversarial Networks (GAN)

Formulation:

GANs is formulated as a minimax game b/w Generator G and Discriminator D:
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Recap Deep Generative Models

❑ Generative Adversarial Networks (GAN)

Optimality in GANs:

Training GANs is equivalent to minimizing the Jensen-Shannon divergence b/w the data and generative 
distributions.
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Recap Deep Generative Models

❑ Generative Adversarial Networks (GAN)

Problem with training GANs:

▪ non convergence: unstable training, vanishing gradient

▪ mode colapsing

Why non convergence? The issue from 𝑓 −divergence family (KL, Jensen-Shanon…) 
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Recap Deep Generative Models

❑ Generative Adversarial Networks (GAN)

Solutions from Optimal Transport:

▪ All member of 𝑓 −divergence has cons: can not be computed when two distributions are disjoint 
support or continuous-discrete, not a distance, not very meaningful

→ Optimal transport distances overcome these problems !
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Generative Modeling from Optimal Transport view

❑ Wasserstein GAN (WGAN)

▪ Let 𝑃𝑟 , 𝑃𝜃 (𝑃𝑔) be the data and model (generative) distribution respectively. WGAN minimizes 

the 𝑊1 distance between 𝑃𝑟 , 𝑃𝜃 via Kantorovich duality:

or 𝐾 −Lipschitz equivalently:

▪ Relax Lipschitz constraint by parametrizing 𝑓 with a neural net 𝐷 and use:
• Weight clipping:  

• Gradient penalty:  , where ො𝑥 sampled from 𝑥 (fake) and 𝑥 (real) with 𝜖

uniformly sampled in [0,1]:  
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Generative Modeling from Optimal Transport view

❑ Wasserstein GAN (WGAN)
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Generative Modeling from Optimal Transport view

❑ Wasserstein GAN (WGAN)

▪ Weight clipping: simple, effective in some cases, but slow convergence, unstable gradient 
(vanishing or exploding), similar to difference constraint: L2 clipping, weight norm, L2-L1 …
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Generative Modeling from Optimal Transport view

❑ Sliced Wasserstein GAN (SWGAN)

▪ The correctness of the estimate in WGAN depends fundamentally on how well the discriminator 
has been trained → it seem to be difficult like the adversarial training in vanilla GAN.

▪ SWGAN:

• only needs the generator, not need the critic / discriminator.
• takes advantage of the closed-form solution of Wasserstein 

distance on 1-D.
but:
• equires large number of projections due to high dimensional

space, ≈ 𝒪(104)
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Generative Modeling from Optimal Transport view

❑ Sliced Wasserstein GAN (SWGAN)

▪ SWGAN: solutions for scaling to high dimensional

• a neural net based discriminator tries to map the real and fake samples into a space where it is easy 
to tell them apart

• the two objectives, which are optimized independently (not adversarial training) of each other are:

where 𝜃 is the generator weight, 𝑓𝜃′
′ is the neural net (CNN) mapping data into subspace, 𝑓𝜃′ is the 

intermediate layer.

• Or using max-Sliced Wasserstein for GAN.
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Generative Modeling from Optimal Transport view

❑ Sliced Wasserstein GAN (SWGAN)
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Generative Modeling from Optimal Transport view

❑ Wasserstein Autoencoder

▪ Focus on latent variable models 𝑃𝐺:

• use non-random decoders for simplicity (similar results for random decoders)

• the optimal transport cost to estimate the distance between 𝑃𝑋 and 𝑃𝐺 is considered in the 
primal form:

▪ Reparametrization of the couplings:
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Generative Modeling from Optimal Transport view

❑ Wasserstein Autoencoder

▪ Reparametrization of the couplings:

• Proof: condition 𝑄𝑍 = 𝑃𝑍 associated to the constraints on the marginals of transport plan Γ.

• Relax the constraints on 𝑄𝑍 by adding a penalty to the objective:

where 𝒬 is any nonparametric set of probabilistic encoders, 𝒟𝑍 is an arbitrary divergence between 𝑄𝑍 and 𝑃𝑍.

• use deep neural networks to parametrize both encoders 𝑄 and decoders 𝐺.
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Generative Modeling from Optimal Transport view

❑ Wasserstein Autoencoder

▪ Formulation: use 𝐷𝑍 is GAN or MMD regularizers:

• WAE-GAN:

- 𝑃𝑍, 𝑄𝑍 are the true and fake distribution respectively.

- low dimension, 𝑃𝑍 is simple, nice shape, easy to matching 

• WAE-MMD:

- performs well when matching high-dimensional standard normal distributions

- not need to tune as training GAN
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Generative Modeling from Optimal Transport view

❑ Wasserstein Autoencoder

▪ Formulation: use 𝐷𝑍 is GAN or MMD regularizers:
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Generative Modeling from Optimal Transport view

❑ Wasserstein Autoencoder

▪ Properties: 

• An explanation for why VAEs tend to generate blurry images
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❑ Wasserstein Autoencoder

▪ Properties: 
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Generative Modeling from Optimal Transport view

❑ Wasserstein Autoencoder

▪ Properties:

• reconstruction term of WAE not come from Gaussian (majority) which needs to tune the 
variance.

• when 𝑐 𝑥, 𝑦 = 𝑥 − 𝑦 2
2, WAE-GAN is equivalent to adversarial auto-encoders (AAE), but 

generalizes AAE in two ways: any cost 𝑐(𝑥, 𝑦) and discrepancy measure 𝐷𝑍.

• allows both probabilistic and deterministic encoder-decoder pairs of any kind.
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Generative Modeling from Optimal Transport view

❑ Sliced Wasserstein Autoencoder

• avoids the need to perform adversarial training in the encoding space and is not restricted to closed-
form distributions.

• takes advantage of the closed-form solution of Wasserstein distance on 1-D.
• fast, simple, effective with small number of projections (𝑧 is low dimension), ≈ 𝒪(10)

• can use max/generalized version of sliced distance
as the regularization instead of SW.
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Generative Modeling from Optimal Transport view

❑ Sliced Wasserstein Autoencoder
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Generative Modeling from Optimal Transport view

❑ Further reading

▪ Recent advances of Optimal Transport facilitate applications in generative modeling: 
(sliced) Gromov-Wasserstein, Sinkhorn, Randkhorn …
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