Optimal Transport for Generative Modeling

Presenter: Son Nguyen VinAl Resident

21/10/2020

Outline

1. A brief review of Optimal Transport

- Monge/Kantorovich formulation
- Wasserstein distance
- Sliced Wasserstein distance
- 2. Recap Deep Generative Models
 - Variational Autoencoders (VAE)
 - Generative Adversarial Networks (GAN)
- 3. Generative Modeling from Optimal Transport view
 - (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
 - (Sliced) Wasserstein Autoencoders (WAE, SWAE)
- 4. References

Outline

1. A brief review of Optimal Transport

- Monge/Kantorovich formulation
- Wasserstein distance
- Sliced Wasserstein distance
- 2. Recap Deep Generative Models
 - Variational Autoencoders (VAE)
 - Generative Adversarial Networks (GAN)
- 3. Generative Modeling from Optimal Transport view
 - (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
 - (Sliced) Wasserstein Autoencoders (WAE, SWAE)
- 4. References

Monge formulation

Definition: We say that $T: X \to Y$ transports $\mu \in \mathcal{P}(X)$ to $v \in \mathcal{P}(Y)$ and we call it a **transport map** if:

 $v(B) = \mu(T^{-1}(B))$ or $v(B) = \mu(A)$ for all v-measurable sets B

shorthand: $v = T_{\#} \mu$

Monge formulation

Monge's Optimal Transport Problem:

Given $\mu \in \mathcal{P}(X)$ and $v \in \mathcal{P}(Y)$:

$$min_T\mathbb{M}(T)=\int_X c(x,T(x))d\mu(x)$$

over measurable maps T:X o Y subject to $v=T_{\#}\mu$

- Monge only considered the problem with c(x,y) = |x-y| . (super hard with $L^2 \operatorname{cost}$)
- The key of hardness in Monge's problem is the **non-linear** constraint: $v(B) = \mu(T^{-1}(B))$
- In continuous case, the constraint require transport map is **bijective** and **differentiable**, it is equivalent to:

$$f(x)=g(T(x))|det(
abla T(x))|\;$$
 ,where $d\mu(x)=f(x)dx,dv(y)=g(y)dy$

Monge formulation

Monge Formulation's cons:

- mass is mapped, it means that mass is not split → hard constraint
- transport map may be not exist.

For example: $\mu = \delta_{x_1}, v = \frac{1}{2}\delta_{y_1} + \frac{1}{2}\delta_{y_2}$ then $v(y_1) = \frac{1}{2}$ but $\mu(T^{-1}(y_1)) \in \{0, 1\}$ depending on weather $x_1 \in T^{-1}(y_1)$. Hence no transport maps exist

There are two importance cases where transport maps exist:

1. The discrete case when $\mu=rac{1}{n}\sum_{i=1}^N\delta_{x_i}$ and $v=rac{1}{n}\sum_{j=1}^N\delta_{y_j}$

2. The absolutely continuous case when $d\mu(x)=f(x)dx$ and dv(y)=g(y)dy

Kantorovich Formulation

- Consider a measure $\pi \in \mathcal{P}(X, Y)$ and think of $d\pi(x, y)$ as the amount of mass transferred from x to y. This allows mass can be moved to **multiple locations**
- We have the constraints:

 $\pi(A imes Y)=\mu(A)$ and $\pi(X imes B)=v(B)$ for all measurable sets $A\subseteq X,B\subseteq Y$

- π is a **joint distribution** which has first marginal $\mu \in \mathcal{P}(X)$ and second marginal $v \in \mathcal{P}(Y)$
- π is called **transport plan** and set of such transport plan $\Pi(\mu,v)$

Kantorovich Formulation

Kantorovich Formulation

Kantorovich's Optimal Transport Problem:

Given $\mu \in \mathcal{P}(X)$ and $v \in \mathcal{P}(Y)$

$$min_{\pi}\mathbb{K}(\pi)=\int_{X imes Y}c(x,y)d\pi(x,y)$$

Assume that there exists a optimal transport map $T^*:X o Y$ subject to Monge formulation. Then we define $d\pi(x,y)=d\mu(x)\delta_{y=T^*(x)}$. It is easy to show that $\pi\in\Pi(x,y)$

$$egin{aligned} \pi(A imes Y) &= \int_A \delta_{T^*(x)\in Y} d\mu(x) = \mu(A) \ \pi(X imes B) &= \int_X \delta_{T^*(x)\in B} d\mu(x) = \mu((T^*)^{-1}(B)) = v(B) \end{aligned}$$

$$\int_{X imes Y} c(x,y) d\pi(x,y) = \int_X \int_Y c(x,y) \delta_{y=T^*(x)} dy d\mu(x) = \int_X c(x,T^*(x)) d\mu(x)$$

Kantorovich Formulation

Kantorovich's Optimal Transport Problem:

Kantorovich problem between two **discrete measures** $\mu = \sum_{i=1}^{m} \alpha_i \delta_{x_i}, v = \sum_{j=1}^{n} \beta_j \delta_{y_j}$ where $\sum_{i=1}^{m} \alpha_i = 1 = \sum_{j=1}^{n} \beta_j, \alpha_i \ge 0, \beta_j \ge 0$ then Kantorovich problem become a linear programme with linear constraint.

$$min_{\pi}\sum_{i=1}^{m}\sum_{j=1}^{n}c_{ij}\pi_{ij}$$

Kantorovich Formulation

Kantorovich's Optimal Transport Problem:

Primal problem: $KP(\mu,v) = min_\pi \int_{X imes Y} c(x,y) d\pi(x,y)$ $\pi(A imes Y) = \mu(A) \quad \pi(X imes B) = v(B)$

 $\begin{array}{ll} \mathsf{Dual \ problem:} & DP(\mu,v) = \sup_{(\varphi,\psi)\in\Phi_c} \int_X \varphi d\mu + \int_Y \psi dv \\ & \Phi_c = \{(\varphi,\psi)\in L^1(\mu)\times L^1(v):\varphi(x)+\psi(y)\leq c(x,y)\} \\ & \int_X |f|d\mu < \infty \end{array}$

 $DP(\mu,v) \leq KP(\mu,v)$

Wasserstein Distance

Definition: Let μ , v are two probability measures in the set of probability measure with finite p'th moment defined on a given metric space (Ω, d) , i.e. exist some x_0 :

 $\int_\Omega d(x,x_0)^p d\mu(x) < +\infty$

For
$$p\geq 1, c(x,y)=d^p(x,y)=|x-y|^p$$
 then: $W_p(\mu,v)=(\min_{\pi\in\Pi(\mu,v)}\int_{\Omega imes\Omega}d^p(x,y)d\pi(x,y))^rac{1}{p}$

When p = 1 Wasserstein Distance becomes Earth Mover Distance

□ Wasserstein Distance

Kantorovich dual form of 1-Wasserstein:

$$egin{aligned} W_1(\mu,
u) &= \sup_{\substack{f,g\ f(x)+g(y)\leq \|x-y\|}} \int fd\mu(x) + \int gd
u(y) \ &= \sup_f \int fd\mu(x) - \int fd
u(y) \quad ext{where } f: \mathbb{R}^d o \mathbb{R}, ext{ Lip}(f) \leq 1 \end{aligned}$$

Wasserstein Distance

Special case: Wasserstein distance has closed-form solution in one dimension.

• Discrete case: $\mu = \frac{1}{n} \sum_{i=1}^{N} \delta_{x_i}$ and $v = \frac{1}{n} \sum_{j=1}^{N} \delta_{y_j}$. Sort $x_1 \leq \ldots \leq x_n$ and $y_1 \leq \ldots \leq y_n$

$$W^p_p(\mu,v) = rac{1}{n}\sum_{i=1}^n |x_i-y_i|^p$$

- Continuous case:
 - the cumulative distribution function: $F_\mu(x)=\mu((-\infty,x])=\int_{-\infty}^x I_\mu(au)d au$
 - the pseudo-inverse: $F_{\mu}^{-1}(t) = \inf \left\{ x \in \mathbb{R} : F_{\mu}(x) \geq t
 ight\}$
 - the unique optimal transport map: $f(x) = F_v^{-1}(F_\mu(x))$

$$W_p(\mu,v) = \Big(\int_X d^p(x,F_v^{-1}(F_\mu(x)))d\mu(x)\Big)^{rac{1}{p}} = \Big(\int_0^1 d^p(F_\mu^{-1}(z),F_v^{-1}(z))dz\Big)^{rac{1}{p}}$$

Sliced Wasserstein distance

Randon transform:

- project higher-dimensional probability densities into sets of one-dimensional marginal distributions and compare these marginal distributions via the Wasserstein distance.
 - \rightarrow take advantage of the **closed-form solution** of Wasserstein distance on 1-D.
- These one dimensional marginal distributions obtained through Radon Transform:

$$\mathcal{R}p_X(t;\theta) = \int_X p_X(x)\delta(t-\theta \cdot x)dx, \ \forall \theta \in \mathbb{S}^{d-1}, \ \forall t \in \mathbb{R}$$

 $p_X(x)$ is a d -dimensional probability density, \mathbb{S}^{d-1} is the d-dimensional unit sphere

$$\mathcal{R}_{p_X}(; heta)$$
 is a one-dimensional slice of $\,p_X(x)$

Sliced Wasserstein distance

Randon transform:

$$\mathcal{R}p_X(t;\theta) = \int_X p_X(x)\delta(t-\theta \cdot x)dx, \ \forall \theta \in \mathbb{S}^{d-1}, \ \forall t \in \mathbb{R}$$

Radon Transform of a empirical distribution $p_X(x) = \frac{1}{M} \sum_{m=1}^M \delta(x - x_m)$ respect to $\theta \in \mathbb{S}^{d-1}$:

$$egin{aligned} Rp_X(t, heta) &= rac{1}{M}\sum_{m=1}^M \int_X \delta(x-x_m)\delta(t-\langle heta,x
angle) dx \ &= rac{1}{M}\sum_{m=1}^M \delta(t-\langle heta,x_m
angle) \end{aligned}$$

 $R(r, \theta)$

Sliced Wasserstein distance

Formulation:

Given two probability measures μ, v with the probability density I_{μ}, I_{v} respectively:

$$egin{aligned} SW_p(\mu,v) &= \left(\int_{\mathbb{S}^{d-1}} W_p^p(\mathcal{R}I_\mu(.\,, heta),\mathcal{R}I_v(.\,, heta))d heta
ight)^rac{1}{p} \ &pprox \left(rac{1}{L}\sum_{l=1}^L W_p^p(\mathcal{R}I_\mu(.\,, heta_l),\mathcal{R}I_v(.\,, heta_l))^rac{1}{p}
ight) \end{aligned}$$

(use Monte Carlo scheme to approximate SW_p distance by drawn samples $heta_l$ uniformly on \mathbb{S}^{d-1})

- $SW^p_p(\mu,v) \leq lpha_{d,p}W^p_p(\mu,v)$, with $lpha_{d,p} = rac{1}{d}\int_{\mathbb{S}^{d-1}}\| heta\|_p^pd heta \leq 1$
- The sensitivity and discriminativeness of Sliced Wasserstein distance depend on the number and the importance of projections *L*.

Sliced Wasserstein distance

Slice-based improved distances:

Max-Sliced Wasserstein distance: to find a single linear projection that maximizes the distance

of the probability measures in the projected space.

$$max-SW_p(I_{\mu},I_v)=max_{ heta\in\mathbb{S}^{d-1}}W_p(\mathcal{R}I_{\mu}(.\,, heta),\mathcal{R}I_v(.\,, heta))$$

E.g:
$$I_{\mu} = \mathcal{N}(0, I), I_{v} = \mathcal{N}(x_{0}, I)$$
 then $\mathcal{R}I_{\mu}(., \theta) = \mathcal{N}(0, 1), \mathcal{R}I_{v}(., \theta) = \mathcal{N}(\langle x_{0}, \theta \rangle, I)$.
In high dimension space, sampled uniform θ would be nearly orthogonal to a fixed vector x_{0}

 \rightarrow the sliced distance will be 0 \rightarrow the best direction is $\theta = x_0$

Sliced Wasserstein distance

Slice-based improved distances:

Generalized Sliced-Wasserstein distance: using Generalized Radon Transform which projects

original distribution on hypersurface:

$$\mathcal{G}I(t, heta) = \int_{\mathbb{R}^d} I(x) \delta(t-g(x, heta)) dx \ GSW_p(I_\mu,I_v) = \Big(\int_{\Omega_ heta} W_p^p(\mathcal{G}I_\mu(.\,, heta),\mathcal{G}I_v(.\,, heta)) d heta\Big)^rac{1}{p}$$

Generalized max Sliced-Wasserstein distance:

$$max-GSW_p(I_{\mu},I_v)=max_{ heta\in\Omega_{ heta}}W_p(\mathcal{G}I_{\mu}(\,.\,, heta),\mathcal{G}I_v(\,.\,, heta))$$

Outline

1. A brief review of Optimal Transport

- Monge/Kantorovich formulation
- Wasserstein distance
- Sliced Wasserstein distance

2. Recap Deep Generative Models

- Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)
- 3. Generative Modeling from Optimal Transport view
 - (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
 - (Sliced) Wasserstein Autoencoders (WAE, SWAE)
- 4. References

- Variational Autoencoders (VAE)
- A directed probabilistic model with **latent variable** z, global parameter θ :

$$p_{ heta}(x,z) = p_{ heta}(z) p_{ heta}(x|z)$$

• **Goal**: maximize the marginal log-likelihood of the dataset:

$$\log p_{ heta}(X) = \Sigma_{i=1}^n \log p_{ heta}(x_i)$$

- Challenge: marginal log-likelihood of any data point is intractable in general
- Key idea: Use variational (E-M) method → maximize a variational lower bound instead:

$$egin{aligned} \log p_{ heta}(x) &= \mathcal{L}(heta, \phi; x) + \mathcal{KL}(q_{\phi}(z|x) \| p_{ heta}(z|x)) \ &\geq \mathcal{L}(heta, \phi; x) = \mathbb{E}_{q_{\phi}(z|x)} \log p_{ heta}(x|z) - \mathcal{KL}(q_{\phi}(z|x) \| p_{ heta}(z)) \end{aligned}$$

Variational Autoencoders (VAE)

 $\mathcal{L}(heta, \phi; x) = \mathbb{E}_{q_{\phi}(z|x)} \log p_{ heta}(x|z) - \mathcal{KL}(q_{\phi}(z|x) \| p_{ heta}(z))$

- Algorithm: maximize the variational lower bound
 - use amortized inference: variational parameter φ is output of a mapping parametrized by a neural net with input x. (this neural net is global)
 - optimize ϕ , θ with stochastic gradient method
 - use Monte Carlo sampling + **reparametrization trick** to estimate gradient.

- $q_{\phi}(z|x)$: probabilistic **encoder** or **inference** network
- $p_{ heta}(x|z)$: probabilistic **decoder** or **generative** network (heta is a neural net)

- Variational Autoencoders (VAE)
- The Autoencoder perspective: $\log p_{\theta}(x) \ge (E_{z \sim q_x(z)} \log p_{\theta}(x|z)) KL(q_{\phi}(z|x)||p(z))$

Reconstruction loss

- Variational objective of VAE has **two goals with a trade-off**: <u>reconstruct and generate</u> or equivalently <u>inference and learning</u> $\hat{z} \sim q_{\phi}(z|x), \hat{x} \sim p_{\theta}(x|\hat{z}) \Rightarrow$ reconstruction $\hat{x} \sim p_{\theta}(x) \leftrightarrow \hat{z} \sim p_{\theta}(z), \hat{x} \sim p_{\theta}(x|\hat{z}) \Rightarrow$ generate sample
- Need a **principle** (unlike maximum likelihood), or other **objective formulations** for AE to balance the above 2 goals.

 $L(\theta, \phi)$ - VAE objective

Regularization

Generative Adversarial Networks (GAN)

Formulation:

Symbol	Meaning	Notes
p_z	Data distribution over noise input \boldsymbol{z}	Usually, just uniform.
p_g	The generator's distribution over data $m{x}$	
p_r	Data distribution over real sample x	

GANs is formulated as a minimax game b/w Generator G and Discriminator D:

$$egin{aligned} \min_{G} \max_{D} L(D,G) &= \mathbb{E}_{x \sim p_r(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1-D(G(z)))] \ &= \mathbb{E}_{x \sim p_r(x)}[\log D(x)] + \mathbb{E}_{x \sim p_g(x)}[\log(1-D(x)] \end{aligned}$$

Generative Adversarial Networks (GAN)

Optimality in GANs:

Proposition 1. For G fixed, the optimal discriminator D is $D_G^*(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}$

Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if $p_g = p_{data}$. At that point, C(G) achieves the value $-\log 4$.

$$C(G) = \max_{D} V(G, D)$$

$$C(G) = -\log(4) + KL\left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right) + KL\left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right)$$

Training GANs is equivalent to minimizing the <u>Jensen-Shannon divergence</u> b/w the data and generative distributions.

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed to reach its optimum given G, and p_g is updated so as to improve the criterion $\mathbb{E}_{\boldsymbol{x} \sim p_{data}}[\log D^*_G(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_g}[\log(1 - D^*_G(\boldsymbol{x}))]$ there p_g converges to p_g

then p_g converges to p_{data}

Generative Adversarial Networks (GAN)

Problem with training GANs:

- non convergence: unstable training, vanishing gradient
- mode colapsing

Why **non convergence**? The issue from f –divergence family (KL, Jensen-Shanon...)

When
$$\theta \neq 0$$
:

$$D_{KL}(P||Q) = \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = +\infty$$

$$D_{KL}(Q||P) = \sum_{x=\theta, y \sim U(0,1)} 1 \cdot \log \frac{1}{0} = +\infty$$

$$D_{JS}(P,Q) = \frac{1}{2} (\sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{1/2} + \sum_{x=0, y \sim U(0,1)} 1 \cdot \log \frac{1}{1/2}) = \log 2$$

Generative Adversarial Networks (GAN)

Solutions from Optimal Transport:

- All member of *f* divergence has cons: can not be computed when two distributions are <u>disjoint</u> support or continuous-discrete, not a distance, not very meaningful
 - ightarrow Optimal transport distances overcome these problems !

Outline

1. A brief review of Optimal Transport

- Monge/Kantorovich formulation
- Wasserstein distance
- Sliced Wasserstein distance
- 2. Recap Deep Generative Models
 - Variational Autoencoders (VAE)
 - Generative Adversarial Networks (GAN)
- 3. Generative Modeling from Optimal Transport view
 - (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
 - (Sliced) Wasserstein Autoencoders (WAE, SWAE)
- 4. References

Wasserstein GAN (WGAN)

• Let P_r , P_{θ} (P_g) be the data and model (generative) distribution respectively. WGAN minimizes the W_1 distance between P_r , P_{θ} via Kantorovich duality:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

or K —Lipschitz equivalently:

$$W(p_r,p_g) = rac{1}{K} \sup_{\|f\|_L \leq K} \mathbb{E}_{x \sim p_r}[f(x)] - \mathbb{E}_{x \sim p_g}[f(x)]$$

- Relax Lipschitz constraint by parametrizing f with a neural net D and use:
 - Weight clipping: $w \leftarrow \operatorname{clip}(w, -c, c)$
 - Gradient penalty: $\lambda \mathop{\mathbb{E}}_{\hat{x} \sim \mathbb{P}_{\hat{x}}} \left[(\|\nabla_{\hat{x}} D(\hat{x})\|_2 1)^2 \right]$, where \hat{x} sampled from \tilde{x} (fake) and x (real) with ϵ uniformly sampled in [0,1]: $\hat{x} \leftarrow \epsilon x + (1 \epsilon)\tilde{x}$

□ Wasserstein GAN (WGAN)

Wasserstein GAN (WGAN)

 Weight clipping: simple, effective in some cases, but slow convergence, unstable gradient (vanishing or exploding), similar to difference constraint: L2 clipping, weight norm, L2-L1 ...

□ Sliced Wasserstein GAN (SWGAN)

The correctness of the estimate in WGAN depends fundamentally on <u>how well the discriminator</u> <u>has been trained</u> → it seem to be difficult like the adversarial training in vanilla GAN.

SWGAN:

- only needs the generator, not need the critic / discriminator.
- takes advantage of the **closed-form solution** of Wasserstein distance on 1-D.

but:

- equires large number of projections due to high dimensional space, $\approx \mathcal{O}(10^4)$

Algorithm 1: Training the Sliced Wasserstein Generator **Given** :Parameters θ , sample size *n*, number of projections m, learning rate α 1 while θ not converged do Sample data $\{\mathcal{D}_i\}_{i=1}^n \sim \mathbb{P}_x$, noise 2 $\{z_i\}_{i=1}^n \sim \mathbb{P}_z;$ $\{\mathcal{F}_i\}_{i=1}^n \leftarrow \{G_\theta(z_i)\}_{i=1}^n;$ 3 compute sliced Wasserstein Distance $(\mathcal{D}, \mathcal{F})$ 4 Init loss $L \leftarrow 0$: 5 Sample random projection directions 6 $\Omega = \{\omega_{1:m}\};$ for each $\omega \in \Omega$ do 7 $\mathcal{D}^{\omega} \leftarrow \{\omega^T D_i\}_{i=1}^n, \mathcal{F}^{\omega} \leftarrow \{\omega^T F_i\}_{i=1}^n;$ 8 $\mathcal{D}^{\omega}_{\sigma} \leftarrow \text{sorted } \mathcal{D}^{\omega}, \mathcal{F}^{\omega}_{\sigma} \leftarrow \text{sorted } \mathcal{F}^{\omega};$ 9 $L \leftarrow L + \frac{1}{n} \| \mathcal{D}^{\omega}_{\sigma} - \mathcal{F}^{\omega}_{\sigma} \|^2;$ 10 end 11 return $\frac{L}{m}$; 12 $\theta \leftarrow \theta - \alpha \nabla_{\theta} L$: 13 14 end

□ Sliced Wasserstein GAN (SWGAN)

- SWGAN: solutions for scaling to high dimensional
 - a neural net based discriminator tries to **map the real and fake samples into a space** where it is easy to tell them apart
 - the two objectives, which are optimized independently (**not adversarial training**) of each other are:

$$\begin{split} \min_{\theta} \frac{1}{|\hat{\Omega}|} \sum_{\omega \in \hat{\Omega}} W_2^2(f_{\theta'}(\mathcal{D})^{\omega}, f_{\theta'}(\mathcal{F})^{\omega}(\theta)), \\ \min_{\theta'} \mathbb{E}[-\log(f_{\theta'}(\mathcal{D}))] + \mathbb{E}[-\log(1 - f_{\theta'}(\mathcal{F}))] \end{split}$$

where θ is the generator weight, $f'_{\theta'}$ is the neural net (CNN) mapping data into subspace, $f_{\theta'}$ is the intermediate layer.

• Or using max-Sliced Wasserstein for GAN.

□ Sliced Wasserstein GAN (SWGAN)

Figure 5. MNIST samples after 40k training iterations for different generator configurations. Batch size = 250, Learning rate = 0.0005, Adam optimizer

Wasserstein Autoencoder

- Focus on latent variable models $P_G: p_G(x) := \int_{\mathcal{Z}} p_G(x|z) p_z(z) dz, \quad \forall x \in \mathcal{X}$
 - use **non-random decoders** for simplicity (similar results for random decoders)
 - the optimal transport cost to estimate the distance between P_X and P_G is considered in the primal form:

$$\inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_G)} \mathbb{E}_{(X,Y) \sim \Gamma} \left[c(X,Y) \right]$$

Reparametrization of the couplings:

Theorem 1. For P_G as defined above with deterministic $P_G(X|Z)$ and any function $G: \mathcal{Z} \to \mathcal{X}$

$$\inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_G)} \mathbb{E}_{(X,Y) \sim \Gamma} \left[c(X,Y) \right] = \inf_{Q \colon Q_Z = P_Z} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)} \left[c(X,G(Z)) \right],$$

where Q_Z is the marginal distribution of Z when $X \sim P_X$ and $Z \sim Q(Z|X)$.

Wasserstein Autoencoder

Reparametrization of the couplings:

Theorem 1. For P_G as defined above with deterministic $P_G(X|Z)$ and any function $G: \mathbb{Z} \to \mathcal{X}$

$$\inf_{\Gamma \in \mathcal{P}(X \sim P_X, Y \sim P_G)} \mathbb{E}_{(X,Y) \sim \Gamma} \left[c(X,Y) \right] = \inf_{Q \colon Q_Z = P_Z} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)} \left[c(X,G(Z)) \right],$$

where Q_Z is the marginal distribution of Z when $X \sim P_X$ and $Z \sim Q(Z|X)$.

- **Proof:** condition $Q_Z = P_Z$ associated to the constraints on the marginals of transport plan Γ .
- Relax the constraints on Q_Z by adding a **penalty** to the objective:

$$D_{\text{WAE}}(P_X, P_G) := \inf_{Q(Z|X) \in \mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)} [c(X, G(Z))] + \lambda \cdot \mathcal{D}_Z(Q_Z, P_Z)$$

where Q is any nonparametric set of probabilistic encoders, D_Z is an arbitrary divergence between Q_Z and P_Z .

• use **deep neural networks** to parametrize both encoders Q and decoders G.

Wasserstein Autoencoder

- **Formulation**: use D_Z is GAN or MMD regularizers:
 - WAE-GAN:

 $D_{WAE-GAN}(P_X,P_G) = ext{inf}_{Q(Z|X)\in\mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X,G(Z))] + \lambda D_{GAN}(Q_Z,P_Z)$

- P_Z , Q_Z are the true and fake distribution respectively.
- low dimension, P_Z is simple, nice shape, easy to matching

• WAE-MMD:

 $D_{WAE-GAN}(P_X,P_G) = \inf_{Q(Z|X)\in\mathcal{Q}} \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X,G(Z))] + \lambda D_{MMD}(Q_Z,P_Z)$

- performs well when matching high-dimensional standard normal distributions
- not need to tune as training GAN

Wasserstein Autoencoder

Formulation: use D_Z is GAN or MMD regularizers:

Algorithm 1Wasserstein Auto-Encoderwith GAN-based penalty (WAE-GAN).Require: Regularization coefficient $\lambda > 0$.Initialize the parameters of the encoder Q_{ϕ} ,decoder G_{θ} , and latent discriminator D_{γ} .while (ϕ, θ) not converged doSample $\{x_1, \ldots, x_n\}$ from the training setSample $\{z_1, \ldots, z_n\}$ from the prior P_Z Sample \tilde{z}_i from $Q_{\phi}(Z|x_i)$ for $i = 1, \ldots, n$ Update D_{γ} by ascending:

$$\frac{\lambda}{n} \sum_{i=1}^{n} \log D_{\gamma}(z_i) + \log \left(1 - D_{\gamma}(\tilde{z}_i)\right)$$

Update Q_{ϕ} and G_{θ} by descending:

$$\frac{1}{n} \sum_{i=1}^{n} c(x_i, G_{\theta}(\tilde{z}_i)) - \lambda \cdot \log D_{\gamma}(\tilde{z}_i)$$

Algorithm 2Wasserstein Auto-Encoderwith MMD-based penalty (WAE-MMD).Require: Regularization coefficient $\lambda > 0$,characteristic positive-definite kernel k.Initialize the parameters of the encoder Q_{ϕ} ,decoder G_{θ} , and latent discriminator D_{γ} .while (ϕ, θ) not converged doSample $\{x_1, \ldots, x_n\}$ from the training setSample $\{z_1, \ldots, z_n\}$ from the prior P_Z Sample \tilde{z}_i from $Q_{\phi}(Z|x_i)$ for $i = 1, \ldots, n$

Update Q_{ϕ} and G_{θ} by descending:

$$\frac{1}{n}\sum_{i=1}^{n}c(x_i, G_{\theta}(\tilde{z}_i)) + \frac{\lambda}{n(n-1)}\sum_{\ell\neq j}k(z_{\ell}, z_j) + \frac{\lambda}{n(n-1)}\sum_{\ell\neq j}k(\tilde{z}_{\ell}, \tilde{z}_j) - \frac{2\lambda}{n^2}\sum_{\ell, j}k(z_{\ell}, \tilde{z}_j)$$

end while

end while

Wasserstein Autoencoder

- Properties:
 - An explanation for why VAEs tend to generate **blurry** images

Figure 1: Both VAE and WAE minimize two terms: the reconstruction cost and the regularizer penalizing discrepancy between P_Z and distribution induced by the encoder Q. VAE forces Q(Z|X = x) to match P_Z for all the different input examples x drawn from P_X . This is illustrated on picture (a), where every single red ball is forced to match P_Z depicted as the white shape. Red balls start intersecting, which leads to problems with reconstruction. In contrast, WAE forces the continuous mixture $Q_Z := \int Q(Z|X) dP_X$ to match P_Z , as depicted with the green ball in picture (b). As a result latent codes of different examples get a chance to stay far away from each other, promoting a better reconstruction.

Wasserstein Autoencoder

Properties:

• An explanation for why VAEs tend to generate **blurry** images

	VAE	WAE-MMD	WAE-GAN		VAE	WAE-MMD	WAE-GAN
t interpolation	7777777777777777777777777777777777777	777772222 6 6 6 6 6 9 7777 0 0 0 0 0 6 6 6 6 6 6 6 4 4 4 4 4 9 9 9 9 0 0 9 9 9 9 4 4 4 4 4 4 1 1 1 1 1 1 9 9 9 9 9 5 5 5 5 5 5 5 1 1 1 1	77777777444 6666665557 00666666666 4444400000 99999944444 111119999 555511111	Test interpolations			
Test reconstructions	2910606660666666666666666666666666666666	291060 291060 6060 9425526 475526 6/250686 6/250686 6/250686 658245/3	-4291060 -4291060 79425526 61250686 61250686 65824513 05824513	Test reconstructions			
Random samples	14049337549684257 146487549687549 426487549677534 4264837596777534 4286482045175347 4286482045175347 42864820451885457 0154698538546 102578787878787 102578787878787 102578787878787 1057878787878787 10578787878787878 10578787878787878 105787878787878 105787878 10578787878 105787878 105787878 105787878 10578 1057878	145052973594396 642391172564276 849391172564276 84940472047 405145940472047 40514598949452 7920154698949 405154698949 79202154698949 792021546989 792021546989 79202154698 79202154698 7920215469 79202154 702025 702025 702025 715505 715505 715505 715505 715505 715505 715505 715505 715505 750	0510886769/0402 05510886769/0402 730012219559 72688849967/3755 05/1974967/375 05/197579559 05/19875946718 0518957956318368 00189155795094724 00189155795094724 00189155795094724 00189155795094724 001891539504 00189795394 0018915395 001891539 001891539 001891539 001891539 001891539 001891539 001891539 001891539 001891539 001891539 001891539 001891539 00189539 00189539 0019000 00190000 001900000000000000	-		MMD (middle column), and WA	

trained

Wasserstein Autoencoder

Properties:

- reconstruction term of WAE not come from Gaussian (majority) which needs to tune the variance.
- when $c(x, y) = ||x y||_2^2$, WAE-GAN is equivalent to adversarial auto-encoders (AAE), but generalizes AAE in two ways: any cost c(x, y) and discrepancy measure D_Z .
- allows both probabilistic and deterministic encoder-decoder pairs of any kind.

Sliced Wasserstein Autoencoder

- avoids the need to perform adversarial training in the encoding space and is not restricted to closedform distributions.
- takes advantage of the closed-form solution of Wasserstein distance on 1-D.
- fast, simple, effective with small number of projections (z is low dimension), $\approx O(10)$

 $D_{SWAE}(P_X,P_G) = ext{inf}_{Q(Z|X)\in\mathcal{Q}} \ \mathbb{E}_{P_X} \mathbb{E}_{Q(Z|X)}[c(X,G(Z))] + \lambda SW(Q_Z,P_Z)$

• can use **max/generalized version** of sliced distance as the regularization instead of SW.

Figure 2: SW approximations (scaled by $1.22\sqrt{d}$) of the W-2 distance in different dimensions, $d \in \{2^n\}_{n=1}^{10}$, and different number of random slices, L.

□ Sliced Wasserstein Autoencoder

□ Further reading

 Recent advances of Optimal Transport facilitate applications in generative modeling: (sliced) Gromov-Wasserstein, Sinkhorn, Randkhorn ...

References