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1. A brief review of Optimal Transport
*  Monge/Kantorovich formulation
* Wasserstein distance

Sliced Wasserstein distance



A brief review of Optimal Transport
1 Monge formulation

Definition: We say that T: X — Y transports ¢ € P(X) tov € P(Y) and we call it a
transport map if:

v(B) = u(T~1(B)) or v(B) = u(A) for all v-measurable sets B

shorthand: v =Ty pu

A={x: T(x)EB}



A brief review of Optimal Transport

1 Monge formulation

Monge’s Optimal Transport Problem:

Given pe P(X) and v € P(Y):

mintM(T) = [ c(z, T(z))dp(z)
over measurable maps T': X — Y subjectto v = T p

= Monge only considered the problem with ¢(z,y) = |z — y| . (super hard with L? cost)
= The key of hardness in Monge’s problem is the non-linear constraint: v(B) = u(T !(B))

® |n continuous case, the constraint require transport map is bijective and differentiable, it is
equivalent to:

f(z) = g(T(x))|det(VT (z))| ,where du(z) = f(z)dz, dv(y) = g(y)dy



A brief review of Optimal Transport
1 Monge formulation

Monge Formulation’s cons:

= mass is mapped, it means that mass is not split = hard constraint
" transport map may be not exist.

For example: i = 8;,,v = 508, + 568, then v(y) = % but u(T 1(y1)) € {0,1}
depending on weather 1 € T *(y1). Hence no transport maps exist

There are two importance cases where transport maps exist:

N
1. The discrete case when p = % Zil 0z, andV = % ijl 5?;:,-
2. The absolutely continuous case when du(z) = f(z)dz and dv(y) = g(y)dy



A brief review of Optimal Transport
 Kantorovich Formulation

= Consider a measure € P(X,Y) and think of dm(z,y) as the amount of mass
transferred from  to y. This allows mass can be moved to multiple locations
=  We have the constraints:

(A xY) = p(A) and 7(X x B) = v(B) for all measurable sets AC X, BCY

* T is a joint distribution which has first marginal 1 € P(X) and second marginal v € P(Y)

* 7 is called transport plan and set of such transport plan IT(u, v)



A brief review of Optimal Transport

[ Kantorovich Formulation

wiN
I
\
|
I
!
1
1
W] =
wl N
/
/
/
S
BN s
) ~ o
;P S
1
Iy
I s
I
I
| =
wlN

.,

|
—
Wl
W=
W] =
—
*
~..

|

Wl NW| =

@ @A ET @
- es || o5 |

- b4 -7 g 1 1 =50
b 4 2 Bl SSPARE TiE e

G U G WY Gy
Yir Y2 Y3 yr Y2 Y3 N

1 0 0 1 0 Zx 1

S E - U CER] =9

0 1 1lx, 2 1 iy, 2

3 3 9 3 9 9




A brief review of Optimal Transport

(] Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Given p € P(X) andv € P(Y)
min,K(m) = [,y c(z, y)dn(z,y)

Assume that there exists a optimal transport map 7* : X — Y subject to Monge
formulation. Then we define dn(z,y) = du(x)d,—1+ (). It is easy to show that 7 € I(z,y)

(A XY) = [, o @meydu(z) = p(4)
m(X x B) = [x 61+ (z)epdp(z) = p((T*)1(B)) = v(B)

IXXY z,y)dn(z,y) fx f}’ () Aydp(z) fX z, T"(z))du(z)




A brief review of Optimal Transport

(] Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Kantorovich problem between two discrete measures it = Y ;" @0z, v = Y5 Bidy,

where " o, =1=37, Bj,a; > 0,8; > 0 then Kantorovich problem become a linear
programme with linear constraint.

MANg Y 00 D 5 CijTi
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A brief review of Optimal Transport

(] Kantorovich Formulation

Kantorovich’s Optimal Transport Problem:

Primal problem: KP(u,v) = min, [y c(z,y)dn(z,y)
(A xY)=pu(A) (X x B)=u(B)

Dual problem:  DP(u,v) = sup(, ycs, [x ¢du + [y Ydv
@, = {(p,¥) € L' (p) x L' (v) : p(z) +¢(y) < c(z,y)}
fx | fldp < o0

[ DP(u,v) < KP(pu, v)}
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A brief review of Optimal Transport
[ Wasserstein Distance

Definition: Let [, U are two probability measures in the set of probability measure with
finite p’th moment defined on a given metric space (2, d), i.e. exist some z:

Jq d(z, zo)Pdu(z) < +o00

Forp > 1,¢(z,y) = d(z,y) = |z — y|” then:
WP (/-l’a U) — (minWEH(pﬂ,v) fQXQ d? (33: y)dﬂ-(ma y)) »

When p = 1 Wasserstein Distance becomes Earth Mover Distance

12



A brief review of Optimal Transport

] Wasserstein Distance

Kantorovich dual form of 1-Wasserstein:

Wi (p,v) = sup / fdp(z) + / g9dv(y)
f,9
f(z)+g9(y)<|z—yl|

—  sup / fdu(z) — / fdv(y) where f:R* — R, Lip(f) <1
f
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A brief review of Optimal Transport
[ Wasserstein Distance

Special case: Wasserstein distance has closed-form solution in one dimension.

= Discrete case:jt = + Y1V &, and v = Ej\rl% Sort z; <...<wpandy; <

[ W2 (,0) = 2 50 s — gl }

=  Continuous case:

* the cumulative distribution function: F, (z) = u((—o0,z|) = [*_ I.(7)dr
* the pseudo-inverse: F,!(t) = inf{z € R: F, ( ) >t}
* the unique optimal transport map: f(z) = F, ' (F,(z))

<y

n

[Wp(u, v) = (Jx dp(x,Fv‘l(Fﬂ(w)))du(w))%z (




A brief review of Optimal Transport

L] Sliced Wasserstein distance

Randon transform:

= project higher-dimensional probability densities into sets of one-dimensional marginal
distributions and compare these marginal distributions via the Wasserstein distance.

- take advantage of the closed-form solution of Wasserstein distance on 1-D.

= These one dimensional marginal distributions obtained through Radon Transform:

[Rpx(t; f) = [ px(2)5(t — 0 - x)dx, VO € STt Vvt e R}
X

px () is a d —dimensional probability density,

S?1 is the d-dimensional unit sphere

Ry, (;0) is a one-dimensional slice of px(z)

i

)

Ay

Kf ?
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A brief review of Optimal Transport

L] Sliced Wasserstein distance

Rir. 8|
Randon transform:

Ay
Rpx (t;0) :/ px(2)5(t — 0 - z)dz, V6 € ST, Vte R x ..
X
’
1 -

Radon Transform of a empirical distribution px(m) = 77 fozl 5(39 — acm)
d—1
respectto 8 € S" " :

Rpx(t,0) = 37 Yoy Jx 6(z — 2)d(t — (6, 2))da

= LS 6t — (0, zm))

16



A brief review of Optimal Transport

L] Sliced Wasserstein distance

Formulation:

Given two probability measures [, U with the probability density I,u , I,, respectively:
1

SWolp,v) = (ISCH W;(Rfu(.,e),'}?,[v(,,9))d9);

~ (LXE, WE(RIL(.,0), RL (., 0))7

(use Monte Carlo scheme to approximate SW, distance by drawn samples @; uniformly on sé-1 )

- SW;(M, ’U) < ad,pr’(llJ;U), with QAdp = % fgdﬂ HgHng < 1

The sensitivity and discriminativeness of Sliced Wasserstein distance depend on the number and

the importance of projections L.

17



A brief review of Optimal Transport

L] Sliced Wasserstein distance

Slice-based improved distances:

= Max-Sliced Wasserstein distance: to find a single linear projection that maximizes the distance

of the probability measures in the projected space.

{mam — SW,(1,, I,) = mazy i1 W, (RIL(.,0), RI(. 19))}

E.g: I, =N(0,1),I, = N(x,I) then RI,(.,0) = N(0,1),RI,(.,0) = N({z0,6),I).
In high dimension space, sampled uniform @ would be nearly orthogonal to a fixed vector &g

—> the sliced distance will be 0 = the best direction is 8 = x

18



A brief review of Optimal Transport

L] Sliced Wasserstein distance

Slice-based improved distances:

= Generalized Sliced-Wasserstein distance: using Generalized Radon Transform which projects

original distribution on hypersurface: Linedg = | P

9(x,6o)

GI(t,0) = [oa I(2)d(t — g(z,0))dx : > -

GSW,(I,,1,) = (fﬂg W2 (GL,(.,8), GL,(. ,9))d9)%

H(t, 6y)

= Generalized max Sliced-Wasserstein distance: 161(6,00)

max — GSW,(1,,1,) = maxgeq, W, (G1,(.,0),GL,(.,0))
GI(t,0): Slices with respect to different g(t, 6)
H(t,0) = {x|g(x,0) =t }




Outline

2. Recap Deep Generative Models
* Variational Autoencoders (VAE)
* Generative Adversarial Networks (GAN)

20



Recap Deep Generative Models

 Variational Autoencoders (VAE) o> 5
= Adirected probabilistic model with latent variable z, global parameter 6: lf
po(@,2) = po(po(al2) \ :/

= Goal: maximize the marginal log-likelihood of the dataset:

log pg(X) = X7, log pp(x:) N
= Challenge: marginal log-likelihood of any data point is intractable in general

= Key idea: Use variational (E-M) method = maximize a variational lower bound instead:
logpo(z) = L(8, ¢;z) + KL(gy (2|z)[|pe(2]x))

> L(8, ;) = By, (o) log po(z|2) — KL(gy (2]7)[|po(2))

21



Recap Deep Generative Models

O Variational Autoencoders (VAE)

L0, ¢;z) = By, (21z) log po(z]2) — KL(gy (2|z)||lpe(2))

= Algorithm: maximize the variational lower bound
* use amortized inference: variational parameter ¢ is output of a mapping parametrized by a
neural net with input x. (this neural net is global)
* optimize ¢, 8 with stochastic gradient method

* use Monte Carlo sampling + reparametrization trick to estimate gradient.

22



Recap Deep Generative Models

O Variational Autoencoders (VAE) merenee Seneralve

Input Image

= The Autoencoder perspective: 91 X

-

h.

~~ '
Reconstruction loss Regularization
N /

L(0,¢) - VAE objective

log pg(z) > (Ezqu(z) 10%1)9(33’2)) N f(L(qu(z]:r)Hp(z)) ) 4s(2[2) 0 polal?)

Latent distribution

* gy (2|z): probabilistic encoder or inference network

«  pg(x|2) : probabilistic decoder or generative network (8 is a neural net)

23



Recap Deep Generative Models

O Variational Autoencoders (VAE)
= The Autoencoder perspective: log py(z) > (E,,, (»)logpo(z|z)) — KL(gg(z|2)||p(2))

A o/ -

~

Reconstruction loss Regularization
N /

L(60, ¢) - VAE objective

e Variational objective of VAE has two goals with a trade-off:

(3)

reconstruct and generate or equivalently inference and learning

~ ~ ~ . Better REC
Z ~ qy(z|x), & ~ pg(z|2) > reconstruction % Worse KL
&~ pg(x) <> 2 ~ py(z), & ~ pg(x|Z) > generate sample
>‘(3)
* Need a principle (unlike maximum likelihood), or other objective
formulations for AE to balance the above 2 goals. o, Worse REC
X" Better KL

24



Recap Deep Generative Models

J Generative Adversarial Networks (GAN)

Formulation:
Symbol Meaning Notes
P Data distribution over noise input 2 Usually, just uniform.
Pg The generator’s distribution over data @
Pr Data distribution over real sample x

GANSs is formulated as a minimax game b/w Generator G and Discriminator D:

minmax L(D, G) = By, (o) [log D(z)] + E.p ;) [log(1 — D(G(2)))]
— E:.cwpf (z) [lOg D(i[;‘)] + E:cmpg{zn) [log(l o D(ﬂ?)]

25



Recap Deep Generative Models

J Generative Adversarial Networks (GAN)
Optimality in GANSs:

Proposition 1. For G fixed, the optimal discriminator D is D¢ (x) = Pdata(®)
pdata(w) + Pg (.’B)

Theorem 1. The global minimum of the virtual training criterion C(QG) is achieved if and only if
Pg = Pdata- At that point, C(G) achieves the value —log 4.

C(G) =max V (G, D)

C(G) = —log(4) + KL (pdm

pdala;_ Pg ) + KL (pg pdata;_ Pg )

Training GANs is equivalent to minimizing the Jensen-Shannon divergence b/w the data and generative
distributions.

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and p, is updated so as to improve the criterion
Enpuu 108 D ()] + Erop, [l0g(1 — D ()]
then Pg converges 10 Pgara 26



Recap Deep Generative Models

J Generative Adversarial Networks (GAN)
Problem with training GANS:

" non convergence: unstable training, vanishing gradient
= mode colapsing

Why non convergence? The issue from f —divergence family (KL, Jensen-Shanon...)

V(z,y) € P,z =0and y ~ U(0,1)

When 8 £ 0: V(z,y) €Q,z=60,0<8 <1landy~ U(0,1)
1
Dir(PlQ) = >, 1-loggs =+oo
z=0,y~17(0,1) —
. |
DKL(Q”P) = Z 1 'loga = +00 0.6
=0 y~-U(01) >
1 1 1
Dis(P,@=3( 3, llggmt+ 3, 1loggp)=log2 .,
r—0,y~U(0,1) z=0,y~U{0,1)

0.0 0.2 0.4 0.6 08 1.0

27



Recap Deep Generative Models

J Generative Adversarial Networks (GAN)
Solutions from Optimal Transport:

V(z,y) € P,z =0and y ~ U(0,1) e o7
Y(z,y) € Q,z =06,0< 8§ <landy~ U(0,1) N "._. ._." os
1.0+ : .
— P = o 03
—-— . .
0.8 1 '.. ..' 0.2
0.6 "
091,0 0.5 0.0 0.5 10 09],0 0.5 0.0 0.5 1.0
0.4
0.2 1 1 1
DJS(P:Q):E( Z l-logﬁ— Z 1'1031;2):1022
00 2—0y~U(0,1) £—0,4-U(0,1) /
0.0 02 04 06 08 10 W(P,Q) = |6

X

= All member of f —divergence has cons: can not be computed when two distributions are disjoint
support or continuous-discrete, not a distance, not very meaningful

- Optimal transport distances overcome these problems ! 28



Outline

3. Generative Modeling from Optimal Transport view
* (Sliced) Wasserstein Generative Adversarial Networks (WGAN, SWGAN)
* (Sliced) Wasserstein Autoencoders (WAE, SWAE)

29



Generative Modeling from Optimal Transport view

J Wasserstein GAN (WGAN)

Let P, Py (F,) be the data and model (generative) distribution respectively. WGAN minimizes
the W; distance between P., Py via Kantorovich duality:

W(P’ra PQ) — ||fS||up<1 EIN]PT‘ [f(SC)] _ EI‘N]PQ [f(ib')]

or K —Lipschitz equivalently:

W(prp,) = = 5up Eyop [£(2)] — Bamy, [f(@)]
K \f1,<k

= Relax Lipschitz constraint by parametrizing f with a neural net D and use:
*  Weight clipping: w < clip(w, —c, c)
e Gradient penalty: A EPA [(||V@D(§:)HQ — 1)2] , Where X sampled from X (fake) and x (real) with €

uniformly sampled in [0,1]: & < ex + (1 — €)@

30



Generative Modeling from Optimal Transport view

O Wasserstein GAN (WGAN)

KDE ™

Standard GAN

o'y v e %
ke @ . » ‘ &% d
» " . " . . s .
Unrolled GAN
steps =5

7o
Samples ‘ i A
)
KDE . .' - 5
. .-,

Wasserstein GAN
N_critic=5

Samples \

Epoch 0 Epoch 1 Epoch § Epoch 10 Epoch 20 Epoch 50  Epoch 100




Generative Modeling from Optimal Transport view

J Wasserstein GAN (WGAN)

= Weight clipping: simple, effective in some cases, but slow convergence, unstable gradient
(vanishing or exploding), similar to difference constraint: L2 clipping, weight norm, L2-L1 ...

—_
o

—— Weioht clinming (o — Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, ngie = 5, a =
Weight clipping (¢ = 0.001) / 0.000L. By = 0. s = 0.9.
Weight clipping (¢ = 0.01) Require: The gradient penalty coefficient ), the number of critic iterations per generator iteration
— \?\chgl.lt (:lipping ( c = 0‘1) Neritics .thfe ‘batcl'.l f;ize m, Adam hyp.erlpflrameters a, (1, Ba.
Require: initial critic parameters wy, initial generator parameters 6.
| == Gradient penalty 1: while 8 has not converged do
2: fort =1, ..., neitic do
fori=1,....mdo
Sample real data @ ~ P, latent variable z ~ p(z), a random number ¢ ~ U[0, 1].
T Gg(z)
T ecx+ (l—e)x
L@ Dy(3) — Dy(x) + A(|VaDw(®)|2 — 1)?
end for
9: w < Adam(V, # Ef;l JACETIGS B, 32)
10: end for
11: Sample a batch of latent variables { ()17 | ~ p(z).

i=

13 10 7 A 1 120 6 Adam(Vyl ST D, (Go(2)). 8. 0x, fr, fa)
Discriminator layer 13: end while

[

|
—_
=
W

|
]
=t

Gradient norm (log scale)

32



Generative Modeling from Optimal Transport view

[ Sliced Wasserstein GAN (SWGAN)

= The correctness of the estimate in WGAN depends fundamentally on how well the discriminator
has been trained = it seem to be difficult like the adversarial training in vanilla GAN.

= SWGAN:

only needs the generator, not need the critic / discriminator.
takes advantage of the closed-form solution of Wasserstein
distance on 1-D.

but:

equires large number of projections due to high dimensional
space, =~ 0(10%)

Algorithm 1: Training the Sliced Wasserstein Gen-
erator

Given :Parameters 6, sample size n, number of

projections m, learning rate

1 while # not converged do

2 | Sample data {D;}"_; ~ P,, noise
{zitizg ~ Pas
3 | {FHD < {Go(z) i
4 compute sliced Wasserstein Distance (D, F)
5 Init loss L + 0;
6 Sample random projection directions
Q= {wim};

7 for each w € (2 do

DY+ {wT D}, F@ + {wTF} ;s

D% + sorted DY, F2 « sorted F*;
10 L+ L+ XD - F2|%
1 end
12 return !‘%;
13 0+ 60—aVyLl;
14 end

33



Generative Modeling from Optimal Transport view

[ Sliced Wasserstein GAN (SWGAN)

SWGAN: solutions for scaling to high dimensional

* aneural net based discriminator tries to map the real and fake samples into a space where it is easy
to tell them apart
* the two objectives, which are optimized independently (not adversarial training) of each other are:

min |£}2| >~ W3 (for(D)*, for (F)*(6)),
wEQ

min E[—log(f (D))] + E[~log(1 — f3 (F))]

where 6 is the generator weight, fg', is the neural net (CNN) mapping data into subspace, f 4 is the
intermediate layer.

* Or using max-Sliced Wasserstein for GAN.

34



Generative Modeling from Optimal Transport view

[ Sliced Wasserstein GAN (SWGAN)

FOM~SM YD)

LN ate SR B . Y e
AN M~~~ > O
Gl//\\Sle?
OQANMU v
WD T RO
AR Rl l B B ol iy
S:?Q\/i3¥5r
M-=funakhA~Acod
RGO ™AY Mo

AUOD)

M QD iy
~EMAVTENMN
s RGN NP
LS Trr OO —
IO FISCYII e >

rreed@HObw R
IO INAS N
BNy TN wWw Yy —
QN d S NT+Q

T R e 1] L
aMmD=— > —39 R«
QO~Qrhsn~~6
CrloQuene\Je

A Y Fo~TA DN

Ng + Auo)

DY HOC AP -
“~IV T NANI -

St o ORI BN
Crrrhrmoesm
MaETmra a0~
roedsan-~ND

—-JO(J\,MI.( L o

ONL N —a e o
NI ~FT~TNwQY
~N Q@) e D C N

S
WD & ) e QNS Y
SrQ O eD -
ealreonn g

Shme

=

~IONNTESaTeEmo
FMNI N Nmim
R IR NP

ABANATY e -

MY = =

S B e N ]

1 St TR

- Oy QO

AR O w0 ) O~ D)
=N D N v D
0 RN RN I

35

cr-

. MNIST samples after 40k training iterations for diff

0, Learning rate

o=

)

P4

Batch size

, Adam optimizer

ent generator configurations.
0.0005



Generative Modeling from Optimal Transport view

] Wasserstein Autoencoder
= Focus on latent variable models P;: Pc(z) = [ZPG($|Z)Pz(Z)dZa Ve e &

* use non-random decoders for simplicity (similar results for random decoders)

* the optimal transport cost to estimate the distance between Py and P, is considered in the
primal form:

FEP(Xr\iJ]I}’)f(,YNPG) E(X,Y)NF [C(X) Y):|

=  Reparametrization of the couplings:

Theorem 1. For P as defined above with deterministic Pg(X|Z) and any function G: Z —+ X

l‘EP(er}-]’)E,YmPGj Eccyyr [¢(X.Y)] = 0.t EryBquix [c(X,G(2))],

where QQz is the marginal distribution of Z when X ~ Px and Z ~ Q(Z|X).

36



Generative Modeling from Optimal Transport view

] Wasserstein Autoencoder

Reparametrization of the couplings:

Theorem 1. For Pg as defined above with deterministic Po(X|Z) and any function G: Z2 — X

CeP(X e gy YT (X Y)] = inf | EpEouzyx [c(X.G(2)]

where Qz is the marginal distribution of Z when X ~ Py and Z ~ Q(Z|X).

* Proof: condition Q, = P, associated to the constraints on the marginals of transport plan .

* Relax the constraints on @, by adding a penalty to the objective:

Dwagr(Px,Pg):= inf Ep E c(X,G(Z))|+X-D , P
waE (Px, Pg) oA o P ozix) (X, G(2))] 72(Qz, Pz)

where Q is any nonparametric set of probabilistic encoders, D, is an arbitrary divergence between Q, and P;.

e use deep neural networks to parametrize both encoders Q and decoders G.

37



Generative Modeling from Optimal Transport view

] Wasserstein Autoencoder

= Formulation: use D, is GAN or MMD regularizers:

e WAE-GAN:
Dy arp-gan (Px, Pg) = infgz1x)e0 Epy Eg(zx) [¢(X, G(Z))] + ADgan (Qz, Pz)

- P, Q5 are the true and fake distribution respectively.

- low dimension, P is simple, nice shape, easy to matching

 WAE-MMD:
Dwagr can(Px, Pg) = infyz1x1c0 Ery Egz)x) [c(X, G(Z))] + ADyup(Q2z, Pz)
- performs well when matching high-dimensional standard normal distributions

- not need to tune as training GAN
38



Generative Modeling from Optimal Transport view

] Wasserstein Autoencoder

= Formulation: use D, is GAN or MMD regularizers:

Algorithm 1 Wasserstein Auto-Encoder Algorithm 2 Wasserstein Auto-Encoder

with GAN-based penalty (WAE-GAN). with MMD-based penalty (WAE-MMD).
Require: Regularization coefficient A > 0. Require: Regularization coefficient A > 0,
Initialize the parameters of the encoder @, characteristic positive-definite kernel k.

decoder Gy, and latent discriminator 1.

Initialize the parameters of the encoder ),
while (¢, #) not converged do

decoder Gy, and latent discriminator D.,.

Sample {x ,Tn} from the training set
ple {1, b s while (¢, #) not converged do
Sample {z1,..., z“} from the prior Pz o
Sample 3; from Q,(Z|z;) fori=1,..., n Sample {x1,...,2z,} from the training set
Update D, by ascending: Sample {z1,...,z,} from the prior Pz
Sample Z; from Q,(Z|x;) fori=1...., n

A T
A Zlog D(z) + log(l _ Dq.(Z;)) Update )y and Gy by descending:
n ) )

i=1

Update Q4 and Gy by descending: n Z i, Go(%) ; k(ze, z;)
J
A L
—Z z;, Go(Z)) — A-log D (%) +.n(n_1}zk “t % ZL Zpy %
n im1 ! 5
end while end while

39



Generative Modeling from Optimal Transport view

] Wasserstein Autoencoder

=  Properties:

* An explanation for why VAEs tend to generate blurry images

(a) VAE (b) WAE
z Pz z
Ps(X|Z el¢|X) Pa(X|Z ANZ|X)
VAE reconstruction WAE reconstruction

Figure 1: Both VAE and WAE minimize two terms: the reconstruction cost and the regular-
izer penalizing discrepancy between Pz and distribution induced by the encoder Q. VAE forces
Q(Z|X = z) to match Pz for all the different input examples « drawn from Px. This is illustrated
on picture (a), where every single red ball is forced to match Pz depicted as the white shape. Red
balls start intersecting, which leads to problems with reconstruction. In contrast, WAE forces the
continuous mixture Qz = [ Q(Z|X)dPyx to match Pz, as depicted with the green ball in picture
(b). As a result latent codes of different examples get a chance to stay far away from each other,
promoting a better reconstruction.
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Figure 3: VAE (left column), WAE-MMD (middle column), and WAE-GAN (right column) trained
on CelebA dataset. In “test reconstructions” odd rows correspond to the real test points.



Generative Modeling from Optimal Transport view

] Wasserstein Autoencoder

= Properties:
* reconstruction term of WAE not come from Gaussian (majority) which needs to tune the
variance.
« when c(x,y) = ||x — yl||3, WAE-GAN is equivalent to adversarial auto-encoders (AAE), but
generalizes AAE in two ways: any cost c(x,y) and discrepancy measure D.

* allows both probabilistic and deterministic encoder-decoder pairs of any kind.
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Generative Modeling from Optimal Transport view

L] Sliced Wasserstein Autoencoder

avoids the need to perform adversarial training in the encoding space and is not restricted to closed-
form distributions.

* takes advantage of the closed-form solution of Wasserstein distance on 1-D.
» fast, simple, effective with small number of projections (z is low dimension), = 0(10)

Dgwar(Px, Pg) = infozx)co Erc Eq(z)x) [c(X, G(Z))] + ASW(Qz, Pz)

12

-

* can use max/generalized version of sliced distance L i
as the regularization instead of SW.

= SW;, L=50
m SW;, L=100 |
- SW;, L=500

SW3, L=1000 | |

2 4 8 16 32 64 128 256 512 1024
d, d-dimensional space

logs(distance)
o =]

-

1]

0

Figure 2: SW approximations (scaled by 1.221/d) of the W-2
distance in different dimensions, d € {2"}10 . and different
number of random slices, L. 43
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Iterations

WAE-GAN




Generative Modeling from Optimal Transport view

O Further reading

= Recent advances of Optimal Transport facilitate applications in generative modeling:
(sliced) Gromov-Wasserstein, Sinkhorn, Randkhorn ...
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